About the Project

👉1(716)351-6210📞Delta Flights 🪐Airlines 🛸Ticket Change Phone 🌍Number

AdvancedHelp

Did you mean 👉1(716)351-621📞Delta Flights 🪐stirlingses 🛸picker Change honneur 🌍Number ?

(0.006 seconds)

1—10 of 845 matching pages

1: Bibliography J
  • L. Jager (1997) Fonctions de Mathieu et polynômes de Klein-Gordon. C. R. Acad. Sci. Paris Sér. I Math. 325 (7), pp. 713–716 (French).
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • A. Jonquière (1889) Note sur la série n = 1 x n / n s . Bull. Soc. Math. France 17, pp. 142–152 (French).
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 2: 24.1 Special Notation
    Bernoulli Numbers and Polynomials
    The origin of the notation B n , B n ( x ) , is not clear. …
    Euler Numbers and Polynomials
    Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
    3: Bibliography D
  • P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Morgan, and D. R. Morrison (Eds.) (1999) Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2. American Mathematical Society, Providence, RI.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • R. B. Dingle (1957a) The Bose-Einstein integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 240–244.
  • R. B. Dingle (1957b) The Fermi-Dirac integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η + 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 225–239.
  • 4: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    ( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . For k = 0 , 1 , the multinomial coefficient is defined to be 1 . … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n : … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …
    5: 24.20 Tables
    §24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    6: 22.7 Landen Transformations
    22.7.1 k 1 = 1 k 1 + k ,
    22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
    22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
    22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
    k 2 = 1 k 1 + k ,
    7: 26.3 Lattice Paths: Binomial Coefficients
    ( m n ) is the number of ways of choosing n objects from a collection of m distinct objects without regard to order. ( m + n n ) is the number of lattice paths from ( 0 , 0 ) to ( m , n ) . …The number of lattice paths from ( 0 , 0 ) to ( m , n ) , m n , that stay on or above the line y = x is ( m + n m ) ( m + n m 1 ) .
    26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    26.3.6 ( m n ) = m n ( m 1 n 1 ) = m n + 1 n ( m n 1 ) , m n 1 ,
    8: 24.6 Explicit Formulas
    §24.6 Explicit Formulas
    The identities in this section hold for n = 1 , 2 , . …
    24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
    24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
    24.6.10 E n = 1 2 n k = 1 n + 1 ( n + 1 k ) j = 0 k 1 ( 1 ) j ( 2 j + 1 ) n .
    9: 4.16 Elementary Properties
    Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
    x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
    Table 4.16.3: Trigonometric functions: interrelations. …
    sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
    sin θ a ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 a 1 ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
    cos θ ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a 1 a ( 1 + a 2 ) 1 / 2
    tan θ a ( 1 a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a 1
    csc θ a 1 ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a a ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
    10: 26.2 Basic Definitions
    Thus 231 is the permutation σ ( 1 ) = 2 , σ ( 2 ) = 3 , σ ( 3 ) = 1 . … As an example, { 1 , 1 , 1 , 2 , 4 , 4 } is a partition of 13. …See Table 26.2.1 for n = 0 ( 1 ) 50 . For the actual partitions ( π ) for n = 1 ( 1 ) 5 see Table 26.4.1. … The example { 1 , 1 , 1 , 2 , 4 , 4 } has six parts, three of which equal 1. …