About the Project

������ ���������������������degree��������� ���kaa77788���qFHdiOS

AdvancedHelp

(0.002 seconds)

31—40 of 131 matching pages

31: 30.8 Expansions in Series of Ferrers Functions
30.8.4 A k f k 1 + ( B k λ n m ( γ 2 ) ) f k + C k f k + 1 = 0 ,
30.8.5 k = R a n , k m ( γ 2 ) a n , k m ( γ 2 ) 1 2 n + 4 k + 1 = 1 2 n + 1 ,
30.8.6 a n , k m ( γ 2 ) = ( n m ) ! ( n + m + 2 k ) ! ( n + m ) ! ( n m + 2 k ) ! a n , k m ( γ 2 ) .
30.8.7 k 2 a n , k m ( γ 2 ) a n , k 1 m ( γ 2 ) = γ 2 16 + O ( 1 k ) ,
30.8.11 C = { γ 2 4 m 2 1 , n m  even , γ 2 ( 2 m 1 ) ( 2 m 3 ) , n m  odd .
32: 14.8 Behavior at Singularities
14.8.1 𝖯 ν μ ( x ) 1 Γ ( 1 μ ) ( 2 1 x ) μ / 2 , μ 1 , 2 , 3 , ,
14.8.2 𝖯 ν m ( x ) ( 1 ) m ( ν m + 1 ) 2 m m ! ( 1 x 2 ) m / 2 , m = 1 , 2 , 3 , , ν m 1 , m 2 , , m ,
14.8.4 𝖰 ν μ ( x ) 1 2 cos ( μ π ) Γ ( μ ) ( 2 1 x ) μ / 2 , μ 1 2 , 3 2 , 5 2 , ,
14.8.7 P ν μ ( x ) 1 Γ ( 1 μ ) ( 2 x 1 ) μ / 2 , μ 1 , 2 , 3 , ,
14.8.8 P ν m ( x ) Γ ( ν + m + 1 ) m ! Γ ( ν m + 1 ) ( x 1 2 ) m / 2 , m = 1 , 2 , 3 , , ν ± m 1 , 2 , 3 , ,
33: 24.17 Mathematical Applications
are called Euler splines of degree n . … A function of the form x n S ( x ) , with S ( x ) 𝒮 n 1 is called a cardinal monospline of degree n . … M n ( x ) is a monospline of degree n , and it follows from (24.4.25) and (24.4.27) that …For each n = 1 , 2 , the function M n ( x ) is also the unique cardinal monospline of degree n satisfying (24.17.6), provided that … is the unique cardinal monospline of degree n having the least supremum norm F on (minimality property). …
34: 14.7 Integer Degree and Order
§14.7 Integer Degree and Order
where P n ( x ) is the Legendre polynomial of degree n . … When m is even and m n , 𝖯 n m ( x ) and P n m ( x ) are polynomials of degree n . …
35: 30.7 Graphics
36: 14.24 Analytic Continuation
14.24.1 P ν μ ( z e s π i ) = e s ν π i P ν μ ( z ) + 2 i sin ( ( ν + 1 2 ) s π ) e s π i / 2 cos ( ν π ) Γ ( μ ν ) 𝑸 ν μ ( z ) ,
14.24.2 𝑸 ν μ ( z e s π i ) = ( 1 ) s e s ν π i 𝑸 ν μ ( z ) ,
14.24.4 𝑸 ν , s μ ( z ) = e s μ π i 𝑸 ν μ ( z ) π i sin ( s μ π ) sin ( μ π ) Γ ( ν μ + 1 ) P ν μ ( z ) ,
37: 30.1 Special Notation
x real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, 1 < x < 1 .
n degree, an integer n = m , m + 1 , m + 2 , .
38: William P. Reinhardt
His undergraduate and graduate degrees are from the University of California at Berkeley and Harvard University, respectively. …
39: 14.3 Definitions and Hypergeometric Representations
14.3.1 𝖯 ν μ ( x ) = ( 1 + x 1 x ) μ / 2 𝐅 ( ν + 1 , ν ; 1 μ ; 1 2 1 2 x ) .
14.3.11 𝖯 ν μ ( x ) = cos ( 1 2 ( ν + μ ) π ) w 1 ( ν , μ , x ) + sin ( 1 2 ( ν + μ ) π ) w 2 ( ν , μ , x ) ,
14.3.15 P ν μ ( x ) = 2 μ ( x 2 1 ) μ / 2 𝐅 ( μ ν , ν + μ + 1 ; μ + 1 ; 1 2 1 2 x ) ,
40: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,