About the Project

雷恩第二大学本科学位证【购证 微kaa77788】upmu

AdvancedHelp

(0.002 seconds)

11—20 of 162 matching pages

11: 14.24 Analytic Continuation
Let s be an arbitrary integer, and P ν μ ( z e s π i ) and 𝑸 ν μ ( z e s π i ) denote the branches obtained from the principal branches by making 1 2 s circuits, in the positive sense, of the ellipse having ± 1 as foci and passing through z . … Next, let P ν , s μ ( z ) and 𝑸 ν , s μ ( z ) denote the branches obtained from the principal branches by encircling the branch point 1 (but not the branch point 1 ) s times in the positive sense. …the limiting value being taken in (14.24.4) when μ . For fixed z , other than ± 1 or , each branch of P ν μ ( z ) and 𝑸 ν μ ( z ) is an entire function of each parameter ν and μ . The behavior of P ν μ ( z ) and 𝑸 ν μ ( z ) as z 1 from the left on the upper or lower side of the cut from to 1 can be deduced from (14.8.7)–(14.8.11), combined with (14.24.1) and (14.24.2) with s = ± 1 .
12: 14.25 Integral Representations
The principal values of P ν μ ( z ) and 𝑸 ν μ ( z ) 14.21(i)) are given by
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
For corresponding contour integrals, with less restrictions on μ and ν , see Olver (1997b, pp. 174–179), and for further integral representations see Magnus et al. (1966, §4.6.1).
13: 14.14 Continued Fractions
14.14.1 1 2 ( x 2 1 ) 1 / 2 P ν μ ( x ) P ν μ 1 ( x ) = x 0 y 0 + x 1 y 1 + x 2 y 2 + ,
x k = 1 4 ( ν μ k + 1 ) ( ν + μ + k ) ( x 2 1 ) ,
y k = ( μ + k ) x ,
14.14.3 ( ν μ ) Q ν μ ( x ) Q ν 1 μ ( x ) = x 0 y 0 x 1 y 1 x 2 y 2 , ν μ ,
x k = ( ν + μ + k ) ( ν μ + k ) ,
14: 14.3 Definitions and Hypergeometric Representations
𝖯 ν μ ( x ) exists for all values of μ and ν . 𝖰 ν μ ( x ) is undefined when μ + ν = 1 , 2 , 3 , . When μ = m = 0 , 1 , 2 , , (14.3.1) reduces to … When μ = m = 1 , 2 , 3 , , (14.3.6) reduces to … As standard solutions of (14.2.2) we take the pair P ν μ ( x ) and 𝑸 ν μ ( x ) , where …
15: 13.14 Definitions and Basic Properties
except that M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , . … The principal branches correspond to the principal branches of the functions z 1 2 + μ and U ( 1 2 + μ κ , 1 + 2 μ , z ) on the right-hand sides of the equations (13.14.2) and (13.14.3); compare §4.2(i). … Except when z = 0 , each branch of the functions M κ , μ ( z ) / Γ ( 2 μ + 1 ) and W κ , μ ( z ) is entire in κ and μ . … When 2 μ is an integer we may use the results of §13.2(v) with the substitutions b = 2 μ + 1 , a = μ κ + 1 2 , and W = e 1 2 z z 1 2 + μ w , where W is the solution of (13.14.1) corresponding to the solution w of (13.2.1). … When 2 μ is not an integer …
16: 13.24 Series
For expansions of arbitrary functions in series of M κ , μ ( z ) functions see Schäfke (1961b). …
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
13.24.2 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = 2 2 μ z μ + 1 2 s = 0 p s ( μ ) ( z ) ( 2 κ z ) 2 μ s J 2 μ + s ( 2 κ z ) ,
where p 0 ( μ ) ( z ) = 1 , p 1 ( μ ) ( z ) = 1 6 z 2 , and higher polynomials p s ( μ ) ( z ) are defined by
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
17: 14.29 Generalizations
14.29.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 1 2 2 ( 1 z ) μ 2 2 2 ( 1 + z ) ) w = 0
As in the case of (14.21.1), the solutions are hypergeometric functions, and (14.29.1) reduces to (14.21.1) when μ 1 = μ 2 = μ . …
18: 13.21 Uniform Asymptotic Approximations for Large κ
§13.21(i) Large κ , Fixed μ
When κ through positive real values with μ ( 0 ) fixed … Other types of approximations when κ through positive real values with μ ( 0 ) fixed are as follows. …
§13.21(ii) Large κ , 0 μ ( 1 δ ) κ
For the functions J 2 μ , Y 2 μ , H 2 μ ( 1 ) , and H 2 μ ( 2 ) see §10.2(ii), and for the env functions associated with J 2 μ and Y 2 μ see §2.8(iv). …
19: 13.17 Continued Fractions
If κ , μ such that μ ± ( κ 1 2 ) 1 , 2 , 3 , , then …
u 2 n + 1 = 1 2 + μ + κ + n ( 2 μ + 2 n + 1 ) ( 2 μ + 2 n + 2 ) ,
u 2 n = 1 2 + μ κ + n ( 2 μ + 2 n ) ( 2 μ + 2 n + 1 ) .
If κ , μ such that μ + 1 2 ± ( κ + 1 ) 1 , 2 , 3 , , then …
v 2 n + 1 = 1 2 + μ κ + n ,
20: 13.16 Integral Representations
In this subsection see §§10.2(ii), 10.25(ii) for the functions J 2 μ , I 2 μ , and K 2 μ , and §§15.1, 15.2(i) for 𝐅 1 2 . … If 1 2 + μ κ 0 , 1 , 2 , , then … If 1 2 ± μ κ 0 , 1 , 2 , , then …where the contour of integration separates the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) from those of Γ ( κ t ) . …where the contour of integration passes all the poles of Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) on the right-hand side.