About the Project

雷恩第二大学本科学位证【购证 微kaa77788】upmu

AdvancedHelp

The term"kaa77788" was not found.Possible alternative term: "27789".

(0.003 seconds)

1—10 of 162 matching pages

1: 14.10 Recurrence Relations and Derivatives
14.10.1 𝖯 ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) + ( ν μ ) ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
𝖰 ν μ ( x ) also satisfies (14.10.1)–(14.10.5).
14.10.6 P ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( x 2 1 ) 1 / 2 P ν μ + 1 ( x ) ( ν μ ) ( ν + μ + 1 ) P ν μ ( x ) = 0 ,
Q ν μ ( x ) also satisfies (14.10.6) and (14.10.7). In addition, P ν μ ( x ) and Q ν μ ( x ) satisfy (14.10.3)–(14.10.5).
2: 13.20 Uniform Asymptotic Approximations for Large μ
§13.20 Uniform Asymptotic Approximations for Large μ
§13.20(iii) Large μ , ( 1 δ ) μ κ μ
(a) In the case μ < κ < μ when μ < κ , and by (13.20.10) when μ = κ . …
§13.20(v) Large μ , Other Expansions
3: 14.27 Zeros
P ν μ ( x ± i 0 ) (either side of the cut) has exactly one zero in the interval ( , 1 ) if either of the following sets of conditions holds:
  • (a)

    μ < 0 , μ , ν , and sin ( ( μ ν ) π ) and sin ( μ π ) have opposite signs.

  • (b)

    μ , ν , μ + ν < 0 , and ν is odd.

  • For all other values of the parameters P ν μ ( x ± i 0 ) has no zeros in the interval ( , 1 ) . For complex zeros of P ν μ ( z ) see Hobson (1931, §§233, 234, and 238).
    4: 13.25 Products
    13.25.1 M κ , μ ( z ) M κ , μ 1 ( z ) + ( 1 2 + μ + κ ) ( 1 2 + μ κ ) 4 μ ( 1 + μ ) ( 1 + 2 μ ) 2 M κ , μ + 1 ( z ) M κ , μ ( z ) = 1 .
    For integral representations, integrals, and series containing products of M κ , μ ( z ) and W κ , μ ( z ) see Erdélyi et al. (1953a, §6.15.3).
    5: 14.9 Connection Formulas
    §14.9(i) Connections Between 𝖯 ν ± μ ( x ) , 𝖯 ν 1 ± μ ( x ) , 𝖰 ν ± μ ( x ) , 𝖰 ν 1 μ ( x )
    𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
    𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
    §14.9(ii) Connections Between 𝖯 ν ± μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν μ ( x )
    §14.9(iii) Connections Between P ν ± μ ( x ) , P ν 1 ± μ ( x ) , 𝑸 ν ± μ ( x ) , 𝑸 ν 1 μ ( x )
    6: 14.1 Special Notation
    x , y , τ real variables.
    μ , ν general order and degree, respectively.
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). … Among other notations commonly used in the literature Erdélyi et al. (1953a) and Olver (1997b) denote 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) by P ν μ ( x ) and Q ν μ ( x ) , respectively. Magnus et al. (1966) denotes 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) , P ν μ ( z ) , and Q ν μ ( z ) by P ν μ ( x ) , Q ν μ ( x ) , 𝔓 ν μ ( z ) , and 𝔔 ν μ ( z ) , respectively. Hobson (1931) denotes both 𝖯 ν μ ( x ) and P ν μ ( x ) by P ν μ ( x ) ; similarly for 𝖰 ν μ ( x ) and Q ν μ ( x ) .
    7: 13.15 Recurrence Relations and Derivatives
    13.15.2 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( z + 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.3 ( κ μ 1 2 ) M κ 1 2 , μ + 1 2 ( z ) + ( 1 + 2 μ ) z M κ , μ ( z ) ( κ + μ + 1 2 ) M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.5 2 μ ( 1 + 2 μ ) M κ , μ ( z ) 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( κ μ 1 2 ) z M κ 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.6 2 μ ( 1 + 2 μ ) z M κ + 1 2 , μ 1 2 ( z ) + ( z 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ μ 1 2 ) z M κ 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.7 2 μ ( 1 + 2 μ ) z M κ + 1 2 , μ 1 2 ( z ) 2 μ ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 .
    8: 14.16 Zeros
    Throughout this section we assume that μ and ν are real, and when they are not integers we write …
  • (a)

    μ 0 .

  • (c)

    μ > 0 , n < m , and m n is odd.

  • (a)

    μ > 0 , μ > ν , μ , and sin ( ( μ ν ) π ) and sin ( μ π ) have opposite signs.

  • (b)

    μ ν , μ , and μ is odd.

  • 9: 14.4 Graphics
    See accompanying text
    Figure 14.4.7: 𝖯 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.8: 𝖰 0 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.9: 𝖯 1 / 2 μ ( x ) , μ = 0 , 1 2 , 1 , 2 , 4 . Magnify
    See accompanying text
    Figure 14.4.24: 𝑸 0 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
    See accompanying text
    Figure 14.4.28: 𝑸 1 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
    10: 13.22 Zeros
    From (13.14.2) and (13.14.3) M κ , μ ( z ) has the same zeros as M ( 1 2 + μ κ , 1 + 2 μ , z ) and W κ , μ ( z ) has the same zeros as U ( 1 2 + μ κ , 1 + 2 μ , z ) , hence the results given in §13.9 can be adopted. Asymptotic approximations to the zeros when the parameters κ and/or μ are large can be found by reversion of the uniform approximations provided in §§13.20 and 13.21. For example, if μ ( 0 ) is fixed and κ ( > 0 ) is large, then the r th positive zero ϕ r of M κ , μ ( z ) is given by
    13.22.1 ϕ r = j 2 μ , r 2 4 κ + j 2 μ , r O ( κ 3 2 ) ,
    where j 2 μ , r is the r th positive zero of the Bessel function J 2 μ ( x ) 10.21(i)). …