About the Project

莱斯布里奇大学学历认证【购证 微kaa77788】big

AdvancedHelp

(0.002 seconds)

11—20 of 93 matching pages

11: 28.14 Fourier Series
28.14.6 c 2 m ν ( q ) c 2 m 2 ν ( q ) = q 4 m 2 ( 1 + O ( 1 m ) ) , m ± .
28.14.10 c 2 m ν ( q ) = ( ( 1 ) m q m Γ ( ν + 1 ) m !  2 2 m Γ ( ν + m + 1 ) + O ( q m + 2 ) ) c 0 ν ( q ) .
12: 18.27 q -Hahn Class
The generic (top level) cases are the q -Hahn polynomials and the big q -Jacobi polynomials, each of which depends on three further parameters. …
§18.27(iii) Big q -Jacobi Polynomials
From Big q -Jacobi to Jacobi
From Big q -Jacobi to Little q -Jacobi
13: 13.20 Uniform Asymptotic Approximations for Large μ
13.20.1 M κ , μ ( z ) = z μ + 1 2 ( 1 + O ( μ 1 ) ) ,
13.20.2 W κ , μ ( x ) = π 1 2 Γ ( κ + μ ) ( 1 4 x ) 1 2 μ ( 1 + O ( μ 1 ) ) ,
13.20.4 M κ , μ ( x ) = 2 μ x X ( 4 μ 2 x 2 μ 2 κ x + μ X ) μ ( 2 ( μ κ ) X + x 2 κ ) κ e 1 2 X μ ( 1 + O ( 1 μ ) ) ,
13.20.5 W κ , μ ( x ) = x X ( 2 μ 2 κ x + μ X ( μ κ ) x ) μ ( X + x 2 κ 2 ) κ e 1 2 X κ ( 1 + O ( 1 μ ) ) ,
13.20.11 W κ , μ ( x ) = ( 1 2 μ ) 1 4 ( κ + μ e ) 1 2 ( κ + μ ) Φ ( κ , μ , x ) U ( μ κ , ζ 2 μ ) ( 1 + O ( μ 1 ln μ ) ) ,
14: 13.21 Uniform Asymptotic Approximations for Large κ
13.21.1 M κ , μ ( x ) = x Γ ( 2 μ + 1 ) κ μ ( J 2 μ ( 2 x κ ) + env J 2 μ ( 2 x κ ) O ( κ 1 2 ) ) ,
13.21.2 W κ , μ ( x ) = x Γ ( κ + 1 2 ) ( sin ( κ π μ π ) J 2 μ ( 2 x κ ) cos ( κ π μ π ) Y 2 μ ( 2 x κ ) + env Y 2 μ ( 2 x κ ) O ( κ 1 2 ) ) ,
13.21.6 M κ , μ ( 4 κ x ) = 2 Γ ( 2 μ + 1 ) κ μ 1 2 ( x ζ 1 + x ) 1 4 I 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
13.21.7 W κ , μ ( 4 κ x ) = 8 / π e κ κ κ 1 2 ( x ζ 1 + x ) 1 4 K 2 μ ( 4 κ ζ 1 2 ) ( 1 + O ( κ 1 ) ) ,
15: 28.4 Fourier Series
28.4.21 A 2 s 0 ( q ) = ( ( 1 ) s 2 ( s ! ) 2 ( q 4 ) s + O ( q s + 2 ) ) A 0 0 ( q ) ,
28.4.22 A m + 2 s m ( q ) B m + 2 s m ( q ) } = ( ( 1 ) s m ! s ! ( m + s ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) ,
28.4.23 A m 2 s m ( q ) B m 2 s m ( q ) } = ( ( m s 1 ) ! s ! ( m 1 ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) .
28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
16: 27.12 Asymptotic Formulas: Primes
27.12.5 | π ( x ) li ( x ) | = O ( x exp ( c ( ln x ) 1 / 2 ) ) , x .
27.12.6 | π ( x ) li ( x ) | = O ( x exp ( d ( ln x ) 3 / 5 ( ln ln x ) 1 / 5 ) ) .
27.12.8 li ( x ) ϕ ( m ) + O ( x exp ( λ ( α ) ( ln x ) 1 / 2 ) ) , m ( ln x ) α , α > 0 ,
17: 6.16 Mathematical Applications
6.16.4 R n ( x ) = O ( n 1 ) , n ,
6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
18: 10.24 Functions of Imaginary Order
J ~ ν ( x ) = 2 / ( π x ) cos ( x 1 4 π ) + O ( x 3 2 ) ,
Y ~ ν ( x ) = 2 / ( π x ) sin ( x 1 4 π ) + O ( x 3 2 ) .
19: 10.45 Functions of Imaginary Order
I ~ ν ( x ) = ( 2 π x ) 1 2 e x ( 1 + O ( x 1 ) ) ,
K ~ ν ( x ) = ( π / ( 2 x ) ) 1 2 e x ( 1 + O ( x 1 ) ) .
20: 13.8 Asymptotic Approximations for Large Parameters
13.8.6 M ( a , b , b ) = π ( b 2 ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) + ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) ,
13.8.7 U ( a , b , b ) = π ( 2 b ) 1 2 a ( 1 Γ ( 1 2 ( a + 1 ) ) ( a + 1 ) 8 / b 3 Γ ( 1 2 a ) + O ( 1 b ) ) .
13.8.17 M ( a , b , z ) = e ν z Γ ( b ) Γ ( a ) ( 1 + ( 1 ν ) ( 1 + 6 ν 2 z 2 ) 12 a + O ( 1 min ( a 2 , b 2 ) ) ) ,
13.8.18 U ( a , b + 1 , z ) = z b e ( 1 ν ) z Γ ( b ) Γ ( a ) ( 1 + ν z ( 1 ν ) ( 2 ν z ) 2 a + O ( 1 min ( a 2 , b 2 ) ) ) , z > 0 ,