About the Project

推排九扑克牌咋玩【杏彩体育qee9.com】3cN

AdvancedHelp

(0.003 seconds)

11—20 of 579 matching pages

11: 22.5 Special Values
Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
z
cn z 1 , 0 0 , k i k / k , 0 , i / k 1 , 0 1 , 0 1 , 0
Table 22.5.2 gives sn ( z , k ) , cn ( z , k ) , dn ( z , k ) for other special values of z . …
Table 22.5.3: Limiting forms of Jacobian elliptic functions as k 0 .
sn ( z , k ) sin z cd ( z , k ) cos z dc ( z , k ) sec z ns ( z , k ) csc z
cn ( z , k ) cos z sd ( z , k ) sin z nc ( z , k ) sec z ds ( z , k ) csc z
Table 22.5.4: Limiting forms of Jacobian elliptic functions as k 1 .
sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
For values of K , K when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i π / 3 (equianharmonic case) see §23.5(v). …
12: 31.2 Differential Equations
where 2 ω 1 and 2 ω 3 with ( ω 3 / ω 1 ) > 0 are generators of the lattice 𝕃 for ( z | 𝕃 ) . … Lastly, w ( z ) = ( z a ) 1 ϵ w 3 ( z ) satisfies (31.2.1) if w 3 is a solution of (31.2.1) with transformed parameters q 3 = q + γ ( 1 ϵ ) ; α 3 = α + 1 ϵ , β 3 = β + 1 ϵ , ϵ 3 = 2 ϵ . By composing these three steps, there result 2 3 = 8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1). … If z ~ = z ~ ( z ) is one of the 3 ! = 6 homographies that map to , then w ( z ) = w ~ ( z ~ ) satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and appropriately transformed parameters. …If z ~ = z ~ ( z ) is one of the 4 ! 3 ! = 18 homographies that do not map to , then an appropriate prefactor must be included on the right-hand side. …
13: 22.6 Elementary Identities
22.6.6 cn ( 2 z , k ) = cn 2 ( z , k ) sn 2 ( z , k ) dn 2 ( z , k ) 1 k 2 sn 4 ( z , k ) = cn 4 ( z , k ) k 2 sn 4 ( z , k ) 1 k 2 sn 4 ( z , k ) ,
22.6.17 1 cn ( 2 z , k ) 1 + cn ( 2 z , k ) = sn 2 ( z , k ) dn 2 ( z , k ) cn 2 ( z , k ) ,
22.6.19 sn 2 ( 1 2 z , k ) = 1 cn ( z , k ) 1 + dn ( z , k ) = 1 dn ( z , k ) k 2 ( 1 + cn ( z , k ) ) = dn ( z , k ) k 2 cn ( z , k ) k 2 k 2 ( dn ( z , k ) cn ( z , k ) ) ,
22.6.20 cn 2 ( 1 2 z , k ) = k 2 + dn ( z , k ) + k 2 cn ( z , k ) k 2 ( 1 + cn ( z , k ) ) = k 2 ( 1 dn ( z , k ) ) k 2 ( dn ( z , k ) cn ( z , k ) ) = k 2 ( 1 + cn ( z , k ) ) k 2 + dn ( z , k ) k 2 cn ( z , k ) ,
22.6.21 dn 2 ( 1 2 z , k ) = k 2 cn ( z , k ) + dn ( z , k ) + k 2 1 + dn ( z , k ) = k 2 ( 1 cn ( z , k ) ) dn ( z , k ) cn ( z , k ) = k 2 ( 1 + dn ( z , k ) ) k 2 + dn ( z , k ) k 2 cn ( z , k ) .
14: 22.16 Related Functions
22.16.13 cn ( x , k ) = cos ϕ = cos ( am ( x , k ) ) .
22.16.16 ( x , k ) = k 2 0 x cn 2 ( t , k ) d t + k 2 x ,
22.16.24 ( x , k ) = 0 x ( ns 2 ( t , k ) t 2 ) d t + x 1 + x cn ( x , k ) ds ( x , k ) ,
22.16.25 ( x , k ) = 0 x ( ds 2 ( t , k ) t 2 ) d t + x 1 + k 2 x cn ( x , k ) ds ( x , k ) ,
where ξ = x / θ 3 2 ( 0 , q ) . …
15: 29.15 Fourier Series and Chebyshev Series
Polynomial 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 )
When ν = 2 n + 3 , m = 0 , 1 , , n , the Fourier series (29.6.53) terminates: …
16: 22.20 Methods of Computation
cn ( x , k ) = cos ϕ 0 ,
To compute sn , cn , dn to 10D when x = 0.8 , k = 0.65 . … Then from (22.20.5), sn ( 0.8 , 0.65 ) = 0.69506 42165 , cn ( 0.8 , 0.65 ) = 0.71894 76580 , dn ( 0.8 , 0.65 ) = 0.89212 34349 . … If needed, the corresponding values of sn and cn can be found subsequently by applying (22.10.4) and (22.7.2), followed by (22.10.5) and (22.7.3). … If either τ or q = e i π τ is given, then we use k = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , k = θ 4 2 ( 0 , q ) / θ 3 2 ( 0 , q ) , K = 1 2 π θ 3 2 ( 0 , q ) , and K = i τ K , obtaining the values of the theta functions as in §20.14. …
17: 29.12 Definitions
29.12.8 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 ) = 𝐸𝑠 2 n + 3 2 m + 2 ( z , k 2 ) ,
These functions are polynomials in sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) . …
Table 29.12.1: Lamé polynomials.
ν
eigenvalue
h
eigenfunction
w ( z )
polynomial
form
real
period
imag.
period
parity of
w ( z )
parity of
w ( z K )
parity of
w ( z K i K )
2 n + 1 b ν 2 m + 1 ( k 2 ) 𝑐𝐸 ν m ( z , k 2 ) cn P ( sn 2 ) 4 K 4 i K even odd even
2 n + 2 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝐸 ν m ( z , k 2 ) sn cn P ( sn 2 ) 2 K 4 i K odd odd even
2 n + 3 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝑑𝐸 ν m ( z , k 2 ) sn cn dn P ( sn 2 ) 2 K 2 i K odd odd odd
18: 22.21 Tables
Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
19: 22.2 Definitions
k = θ 2 2 ( 0 , q ) θ 3 2 ( 0 , q ) ,
k = θ 4 2 ( 0 , q ) θ 3 2 ( 0 , q ) ,
K ( k ) = π 2 θ 3 2 ( 0 , q ) ,
22.2.5 cn ( z , k ) = θ 4 ( 0 , q ) θ 2 ( 0 , q ) θ 2 ( ζ , q ) θ 4 ( ζ , q ) = 1 nc ( z , k ) ,
and on the left-hand side of (22.2.11) p , q are any pair of the letters s , c , d , n , and on the right-hand side they correspond to the integers 1 , 2 , 3 , 4 .
20: 22.7 Landen Transformations
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.7 cn ( z , k ) = ( 1 + k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) ,