About the Project

房产继承公证书【WeChat微aptao168】83w

AdvancedHelp

(0.001 seconds)

21—30 of 284 matching pages

21: 28.29 Definitions and Basic Properties
The basic solutions w I ( z , λ ) , w II ( z , λ ) are defined in the same way as in §28.2(ii) (compare (28.2.5), (28.2.6)). … Then (28.29.1) has a nontrivial solution w ( z ) with the pseudoperiodic property … Let w ( z ) be a solution linearly independent of P ( z ) . … Furthermore, for each solution w ( z ) of (28.29.1) …A nontrivial solution w ( z ) is either a Floquet solution with respect to ν , or w ( z + π ) e i ν π w ( z ) is a Floquet solution with respect to ν . …
22: 4.34 Derivatives and Differential Equations
With a 0 , the general solutions of the differential equations
4.34.7 d 2 w d z 2 a 2 w = 0 ,
4.34.8 ( d w d z ) 2 a 2 w 2 = 1 ,
4.34.9 ( d w d z ) 2 a 2 w 2 = 1 ,
4.34.10 d w d z + a 2 w 2 = 1 ,
23: 4.5 Inequalities
For more inequalities involving the exponential function see Mitrinović (1964, pp. 73–77), Mitrinović (1970, pp. 266–271), and Bullen (1998, pp. 81–83).
24: 15.10 Hypergeometric Differential Equation
15.10.17 w 3 ( z ) = Γ ( 1 c ) Γ ( a + b c + 1 ) Γ ( a c + 1 ) Γ ( b c + 1 ) w 1 ( z ) + Γ ( c 1 ) Γ ( a + b c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) ,
15.10.18 w 4 ( z ) = Γ ( 1 c ) Γ ( c a b + 1 ) Γ ( 1 a ) Γ ( 1 b ) w 1 ( z ) + Γ ( c 1 ) Γ ( c a b + 1 ) Γ ( c a ) Γ ( c b ) w 2 ( z ) ,
15.10.19 w 5 ( z ) = Γ ( 1 c ) Γ ( a b + 1 ) Γ ( a c + 1 ) Γ ( 1 b ) w 1 ( z ) + e ( c 1 ) π i Γ ( c 1 ) Γ ( a b + 1 ) Γ ( a ) Γ ( c b ) w 2 ( z ) ,
15.10.21 w 1 ( z ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) w 3 ( z ) + Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) w 4 ( z ) ,
15.10.25 w 1 ( z ) = Γ ( c ) Γ ( b a ) Γ ( b ) Γ ( c a ) w 5 ( z ) + Γ ( c ) Γ ( a b ) Γ ( a ) Γ ( c b ) w 6 ( z ) ,
25: 32.2 Differential Equations
be a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in . … They are distinct modulo Möbius (bilinear) transformations … In P V , if w ( z ) = ( coth u ( ζ ) ) 2 with ζ = ln z , then … Then w ( z ) = f 1 ( z ) satisfies P IV  with … Then w ( z ) = 1 ( z / f 1 ( z ) ) satisfies P V  with …
26: How to Cite
  • [DLMF]

    NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.2.0 of 2024-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

  • 27: 28.2 Definitions and Basic Properties
    §28.2(ii) Basic Solutions w I , w II
    Furthermore, a solution w with given initial constant values of w and w at a point z 0 is an entire function of the three variables z , a , and q . … (28.2.1) possesses a fundamental pair of solutions w I ( z ; a , q ) , w II ( z ; a , q ) called basic solutions with … w I ( z ; a , q ) is even and w II ( z ; a , q ) is odd. … Even parity means w ( z ) = w ( z ) , and odd parity means w ( z ) = w ( z ) . …
    28: 13.14 Definitions and Basic Properties
    This equation is obtained from Kummer’s equation (13.2.1) via the substitutions W = e 1 2 z z 1 2 + μ w , κ = 1 2 b a , and μ = 1 2 b 1 2 . … In general M κ , μ ( z ) and W κ , μ ( z ) are many-valued functions of z with branch points at z = 0 and z = . … Also, unless specified otherwise M κ , μ ( z ) and W κ , μ ( z ) are assumed to have their principal values. … For W κ , μ ( z ) with μ < 0 use (13.14.31). … When 2 μ is an integer we may use the results of §13.2(v) with the substitutions b = 2 μ + 1 , a = μ κ + 1 2 , and W = e 1 2 z z 1 2 + μ w , where W is the solution of (13.14.1) corresponding to the solution w of (13.2.1). …
    29: 13.15 Recurrence Relations and Derivatives
    13.15.8 W κ + 1 2 , μ + 1 2 ( z ) z W κ , μ ( z ) + ( κ μ 1 2 ) W κ 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.9 W κ + 1 2 , μ 1 2 ( z ) z W κ , μ ( z ) + ( κ + μ 1 2 ) W κ 1 2 , μ 1 2 ( z ) = 0 ,
    13.15.10 2 μ W κ , μ ( z ) z W κ + 1 2 , μ + 1 2 ( z ) + z W κ + 1 2 , μ 1 2 ( z ) = 0 ,
    13.15.11 W κ + 1 , μ ( z ) + ( 2 κ z ) W κ , μ ( z ) + ( κ μ 1 2 ) ( κ + μ 1 2 ) W κ 1 , μ ( z ) = 0 ,
    13.15.12 ( κ μ 1 2 ) z W κ 1 2 , μ + 1 2 ( z ) + 2 μ W κ , μ ( z ) ( κ + μ 1 2 ) z W κ 1 2 , μ 1 2 ( z ) = 0 ,
    30: 2 Asymptotic Approximations
    … …