About the Project

【AG真人官方qee9.com】斗地主联机7nG1C

AdvancedHelp

(0.001 seconds)

21—30 of 179 matching pages

21: 3.4 Differentiation
B 3 7 = 1 5040 ( 48 56 t 168 t 2 + 140 t 3 + 35 t 4 42 t 5 + 7 t 6 ) ,
B 2 7 = 1 720 ( 72 108 t 213 t 2 + 240 t 3 10 t 4 36 t 5 + 7 t 6 ) ,
B 1 7 = 1 240 ( 144 360 t 48 t 2 + 260 t 3 45 t 4 30 t 5 + 7 t 6 ) ,
B 0 7 = 1 144 ( 36 + 392 t 147 t 2 224 t 3 + 70 t 4 + 24 t 5 7 t 6 ) ,
B 1 7 = 1 144 ( 144 + 216 t 264 t 2 156 t 3 + 85 t 4 + 18 t 5 7 t 6 ) ,
22: 10.73 Physical Applications
See Jackson (1999, Chapter 3, §§3.7, 3.8, 3.11, 3.13), Lamb (1932, Chapter V, §§100–102; Chapter VIII, §§186, 191–193; Chapter X, §§303, 304), Happel and Brenner (1973, Chapter 3, §3.3; Chapter 7, §7.3), Korenev (2002, Chapter 4, §43), and Gray et al. (1922, Chapter XI). … See Jackson (1999, Chapter 9, §9.6), Jones (1986, Chapters 7, 8), and Lord Rayleigh (1945, Vol. I, Chapter IX, §§200–211, 218, 219, 221a; Vol. II, Chapter XIII, §272a; Chapter XV, §302; Chapter XVIII; Chapter XIX, §350; Chapter XX, §357; Chapter XXI, §369). …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … See Smith (1997, Chapter 3, §3.7; Chapter 6, §6.4)Beckmann and Spizzichino (1963, Chapter 4, §§4.2, 4.3; Chapter 5, §§5.2, 5.3; Chapter 6, §6.1; Chapter 7, §7.1.), Kerker (1969, Chapter 5, §5.6.4; Chapter 7, §7.5.6), and Bayvel and Jones (1981, Chapter 1, §§1.6.5, 1.6.6). … See Messiah (1961, Chapter IX, §§7–10). …
23: 4.9 Continued Fractions
4.9.1 ln ( 1 + z ) = z 1 + z 2 + z 3 + 4 z 4 + 4 z 5 + 9 z 6 + 9 z 7 + , | ph ( 1 + z ) | < π .
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
= 1 + z 1 z 2 + z 3 z 2 + z 5 z 2 + z 7
24: 7.17 Inverse Error Functions
7.17.2 inverf x = t + 1 3 t 3 + 7 30 t 5 + 127 630 t 7 + = m = 0 a m t 2 m + 1 , | x | < 1 ,
7.17.3 inverfc x u 1 / 2 + a 2 u 3 / 2 + a 3 u 5 / 2 + a 4 u 7 / 2 + ,
25: 4.19 Maclaurin Series and Laurent Series
4.19.1 sin z = z z 3 3 ! + z 5 5 ! z 7 7 ! + ,
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
26: 4.33 Maclaurin Series and Laurent Series
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
27: 10.76 Approximations
Piessens (1984a, 1990), Piessens and Ahmed (1986), Németh (1992, Chapter 7). …
28: 13.30 Tables
  • Slater (1960) tabulates M ( a , b , x ) for a = 1 ( .1 ) 1 , b = 0.1 ( .1 ) 1 , and x = 0.1 ( .1 ) 10 , 7–9S; M ( a , b , 1 ) for a = 11 ( .2 ) 2 and b = 4 ( .2 ) 1 , 7D; the smallest positive x -zero of M ( a , b , x ) for a = 4 ( .1 ) 0.1 and b = 0.1 ( .1 ) 2.5 , 7D.

  • 29: 12.4 Power-Series Expansions
    12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
    12.4.6 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a 3 2 ) z 3 3 ! + ( a 3 2 ) ( a 7 2 ) z 5 5 ! + ) .
    30: 18.13 Continued Fractions
    18.13.3 a 1 x + 1 2 3 2 x + 2 3 5 3 x + 3 4 7 4 x + ,
    18.13.4 a 1 1 x + 1 2 1 2 ( 3 x ) + 2 3 1 3 ( 5 x ) + 3 4 1 4 ( 7 x ) + ,