About the Project

【杏彩官方qee9.com】领航时时彩k线破解版agulHTj

AdvancedHelp

(0.002 seconds)

21—30 of 458 matching pages

21: 24.6 Explicit Formulas
24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
24.6.3 B 2 n = k = 1 n ( k 1 ) ! k ! ( 2 k + 1 ) ! j = 1 k ( 1 ) j 1 ( 2 k k + j ) j 2 n .
24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
24.6.5 E 2 n = 1 2 n 1 k = 0 n 1 ( 1 ) n k ( n k ) 2 n j = 0 k ( 2 n 2 j k j ) 2 j ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
22: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. …
23: 29.13 Graphics
See accompanying text
Figure 29.13.5: 𝑢𝐸 4 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.6: 𝑢𝐸 4 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.7: 𝑠𝐸 5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
See accompanying text
Figure 29.13.8: 𝑠𝐸 5 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
See accompanying text
Figure 29.13.9: 𝑐𝐸 5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
24: 22.4 Periods, Poles, and Zeros
Figure 22.4.1 illustrates the locations in the z -plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices 0 , 2 K , 2 K + 2 i K , 2 i K . … For the distribution of the k -zeros of the Jacobian elliptic functions see Walker (2009). … This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . … For example, sn ( z + K , k ) = cd ( z , k ) . (The modulus k is suppressed throughout the table.) …
25: 33.19 Power-Series Expansions in r
k ( k + 2 + 1 ) α k + 2 α k 1 + ϵ α k 2 = 0 , k = 2 , 3 , .
Here κ is defined by (33.14.6), A ( ϵ , ) is defined by (33.14.11) or (33.14.12), γ 0 = 1 , γ 1 = 1 , and
33.19.4 γ k γ k 1 + 1 4 ( k 1 ) ( k 2 2 ) ϵ γ k 2 = 0 , k = 2 , 3 , .
33.19.6 k ( k + 2 + 1 ) δ k + 2 δ k 1 + ϵ δ k 2 + 2 ( 2 k + 2 + 1 ) A ( ϵ , ) α k = 0 , k = 2 , 3 , ,
with β 0 = β 1 = 0 , and …
26: 19.7 Connection Formulas
If k > 0 then …where upper signs apply if k 2 > 0 and lower signs if k 2 < 0 . …
§19.7(iii) Change of Parameter of Π ( ϕ , α 2 , k )
There are three relations connecting Π ( ϕ , α 2 , k ) and Π ( ϕ , ω 2 , k ) , where ω 2 is a rational function of α 2 . If k 2 and α 2 are real, then both integrals are circular cases or both are hyperbolic cases (see §19.2(ii)). …
27: 26.8 Set Partitions: Stirling Numbers
s ( n , k ) denotes the Stirling number of the first kind: ( 1 ) n k times the number of permutations of { 1 , 2 , , n } with exactly k cycles. … … S ( n , k ) denotes the Stirling number of the second kind: the number of partitions of { 1 , 2 , , n } into exactly k nonempty subsets. …where the summation is over all nonnegative integers c 1 , c 2 , , c k such that c 1 + c 2 + + c k = n k . k fixed. …
28: 25.8 Sums
25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
25.8.3 k = 0 ( s ) k ζ ( s + k ) k ! 2 s + k = ( 1 2 s ) ζ ( s ) , s 1 .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
25.8.10 k = 1 ζ ( 2 k ) ( 2 k + 1 ) ( 2 k + 2 ) 2 2 k = 1 4 7 4 π 2 ζ ( 3 ) .
29: 26.9 Integer Partitions: Restricted Number and Part Size
p k ( n ) denotes the number of partitions of n into at most k parts. See Table 26.9.1. … equivalently, partitions into at most k parts either have exactly k parts, in which case we can subtract one from each part, or they have strictly fewer than k parts. … As n with k fixed, …
30: 5.8 Infinite Products
5.8.1 Γ ( z ) = lim k k ! k z z ( z + 1 ) ( z + k ) , z 0 , 1 , 2 , ,
5.8.2 1 Γ ( z ) = z e γ z k = 1 ( 1 + z k ) e z / k ,
5.8.4 k = 1 m a k = k = 1 m b k ,
5.8.5 k = 0 ( a 1 + k ) ( a 2 + k ) ( a m + k ) ( b 1 + k ) ( b 2 + k ) ( b m + k ) = Γ ( b 1 ) Γ ( b 2 ) Γ ( b m ) Γ ( a 1 ) Γ ( a 2 ) Γ ( a m ) ,
provided that none of the b k is zero or a negative integer.