About the Project

【亚博体育qee9.com】达人捕鱼游戏在线玩7sE

AdvancedHelp

(0.001 seconds)

21—30 of 200 matching pages

21: 16.25 Methods of Computation
See §§3.6(vii), 3.7(iii), Olde Daalhuis and Olver (1998), Lozier (1980), and Wimp (1984, Chapters 7, 8).
22: 25 Zeta and Related Functions
23: 26.13 Permutations: Cycle Notation
26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
24: 28.23 Expansions in Series of Bessel Functions
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.11 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 1 2 π , h 2 ) ) 1 = 0 B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
28.23.12 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 2 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h cosh z ) ,
28.23.13 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m + 1 ( se 2 m + 2 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h sinh z ) .
25: 29.14 Orthogonality
29.14.4 𝑠𝐸 2 n + 1 m ( s , k 2 ) 𝑠𝐸 2 n + 1 m ( K + i t , k 2 ) ,
26: 26.3 Lattice Paths: Binomial Coefficients
Table 26.3.1: Binomial coefficients ( m n ) .
m n
7 1 7 21 35 35 21 7 1
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
m n
0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 9
6 1 7 28 84 210 462 924 1716 3003
7 1 8 36 120 330 792 1716 3432 6435
27: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
28: 4.39 Continued Fractions
4.39.1 tanh z = z 1 + z 2 3 + z 2 5 + z 2 7 + , z ± 1 2 π i , ± 3 2 π i , .
4.39.2 arcsinh z 1 + z 2 = z 1 + 1 2 z 2 3 + 1 2 z 2 5 + 3 4 z 2 7 + 3 4 z 2 9 + ,
4.39.3 arctanh z = z 1 z 2 3 4 z 2 5 9 z 2 7 ,
29: 28.14 Fourier Series
28.14.3 se ν ( z , q ) = m = c 2 m ν ( q ) sin ( ν + 2 m ) z ,
30: 28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .