About the Project

”Blockchain” Customer service Number 1206⤄360⤄1604 contact ☎️"Number"

AdvancedHelp

(0.002 seconds)

21—30 of 237 matching pages

21: Charles W. Clark
Civil Service, Archie Mahan Prize of the OSA, the Physical Sciences Award of the Washington Academy of Sciences, the Gold and Silver Medals of the U. …
22: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers
23: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …A similar method can be used for the Euler numbers based on (4.19.5). …
§24.19(ii) Values of B n Modulo p
We list here three methods, arranged in increasing order of efficiency. …
24: 27.17 Other Applications
§27.17 Other Applications
Reed et al. (1990, pp. 458–470) describes a number-theoretic approach to Fourier analysis (called the arithmetic Fourier transform) that uses the Möbius inversion (27.5.7) to increase efficiency in computing coefficients of Fourier series. Congruences are used in constructing perpetual calendars, splicing telephone cables, scheduling round-robin tournaments, devising systematic methods for storing computer files, and generating pseudorandom numbers. … There are also applications of number theory in many diverse areas, including physics, biology, chemistry, communications, and art. …
25: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
Here and elsewhere two rational numbers are congruent if the modulus divides the numerator of their difference.
§24.10(ii) Kummer Congruences
§24.10(iii) Voronoi’s Congruence
§24.10(iv) Factors
26: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to [ 12 6 ] q . Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
27: Bibliography S
  • M. R. Schroeder (2006) Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity. 4th edition, Springer-Verlag, Berlin.
  • M. E. Sherry (1959) The zeros and maxima of the Airy function and its first derivative to 25 significant figures. Report AFCRC-TR-59-135, ASTIA Document No. AD214568 Air Research and Development Command, U.S. Air Force, Bedford, MA.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • I. Sh. Slavutskiĭ (1999) About von Staudt congruences for Bernoulli numbers. Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
  • I. Sh. Slavutskiĭ (2000) On the generalized Bernoulli numbers that belong to unequal characters. Rev. Mat. Iberoamericana 16 (3), pp. 459–475.
  • 28: 24.14 Sums
    §24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
    §24.14(ii) Higher-Order Recurrence Relations
    For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
    29: 26.1 Special Notation
    ( m n ) binomial coefficient.
    m n Eulerian number.
    B ( n ) Bell number.
    C ( n ) Catalan number.
    Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
    30: 27.3 Multiplicative Properties
    §27.3 Multiplicative Properties
    Except for ν ( n ) , Λ ( n ) , p n , and π ( x ) , the functions in §27.2 are multiplicative, which means f ( 1 ) = 1 and …
    27.3.2 f ( n ) = r = 1 ν ( n ) f ( p r a r ) .
    27.3.6 σ α ( n ) = r = 1 ν ( n ) p r α ( 1 + a r ) 1 p r α 1 , α 0 .
    27.3.10 f ( n ) = r = 1 ν ( n ) ( f ( p r ) ) a r .