About the Project

%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E3%80%90%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%9C%B0%E5%9D%80%E2%88%B622kk33.com%E3%80%91%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E8%B5%84%E8%AE%AF,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B622kk33.com%E3%80%91%E7%BD%91%E5%9D%80Zg0ngCkEEkEAkfn

AdvancedHelp

(0.051 seconds)

11—20 of 582 matching pages

11: 3.4 Differentiation
The B k n are the differentiated Lagrangian interpolation coefficients: …where A k n is as in (3.3.10). …
B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
where C is a simple closed contour described in the positive rotational sense such that C and its interior lie in the domain of analyticity of f , and x 0 is interior to C . Taking C to be a circle of radius r centered at x 0 , we obtain …
12: 26.5 Lattice Paths: Catalan Numbers
C ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ( n ) are given in Stanley (1999, pp. 219–229).) …
26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
13: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • 14: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • K. Prachar (1957) Primzahlverteilung. Die Grundlehren der mathematischen Wissenschaften, Vol. 91, Springer-Verlag, Berlin-Göttingen-Heidelberg (German).
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • 15: Bibliography K
  • W. Kahan (1987) Branch Cuts for Complex Elementary Functions or Much Ado About Nothing’s Sign Bit. In The State of the Art in Numerical Analysis (Birmingham, 1986), A. Iserles and M. J. D. Powell (Eds.), Inst. Math. Appl. Conf. Ser. New Ser., Vol. 9, pp. 165–211.
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • M. K. Kerimov (2008) Overview of some new results concerning the theory and applications of the Rayleigh special function. Comput. Math. Math. Phys. 48 (9), pp. 1454–1507.
  • E. Kreyszig (1957) On the zeros of the Fresnel integrals. Canad. J. Math. 9, pp. 118–131.
  • 16: Bibliography L
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • E. M. Lifshitz and L. P. Pitaevskiĭ (1980) Statistical Physics, Part 2: Theory of the Condensed State. Pergamon Press, Oxford.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • Lord Kelvin (1905) Deep water ship-waves. Phil. Mag. 9, pp. 733–757.
  • 17: 34 3j, 6j, 9j Symbols
    Chapter 34 3 j , 6 j , 9 j Symbols
    18: 1.12 Continued Fractions
    C n is called the n th approximant or convergent to C . A n and B n are called the n th (canonical) numerator and denominator respectively. … Define … Conversely, C is called an extension of C . … Then the convergents C n satisfy …
    19: 1.11 Zeros of Polynomials
    Set z = w 1 3 a to reduce f ( z ) = z 3 + a z 2 + b z + c to g ( w ) = w 3 + p w + q , with p = ( 3 b a 2 ) / 3 , q = ( 2 a 3 9 a b + 27 c ) / 27 . … f ( z ) = z 3 6 z 2 + 6 z 2 , g ( w ) = w 3 6 w 6 , A = 3 4 3 , B = 3 2 3 . … Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … Let … Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
    20: Bibliography N
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).