About the Project

%E5%8D%9A%E5%BD%A9%E6%8E%A8%E5%B9%BF%E8%AF%9D%E6%9C%AF,%E5%8D%9A%E5%BD%A9%E6%8E%A8%E5%B9%BF%E6%B8%A0%E9%81%93,%E5%8D%9A%E5%BD%A9%E5%BC%95%E6%B5%81%E6%96%B9%E5%BC%8F,%E3%80%90%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%E2%88%B633kk88.com%E3%80%91%E5%8D%9A%E5%BD%A9%E6%8E%A8%E5%B9%BF%E6%8A%80%E5%B7%A7,%E5%8D%9A%E5%BD%A9seo%E6%8E%A8%E5%B9%BF%E6%B8%A0%E9%81%93,%E5%8D%9A%E5%BD%A9%E5%BC%95%E6%B5%81%E6%8A%80%E5%B7%A7,%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8%E6%8E%A8%E5%B9%BF%E6%96%B9%E6%B3%95,%E5%8D%9A%E5%BD%A9%E5%AE%A2%E6%88%B7%E8%AF%9D%E6%9C%AF,%E3%80%90%E5%8D%9A%E5%BD%A9%E5%9C%B0%E5%9D%80%E2%88%B633kk88.com%E3%80%91

AdvancedHelp

(0.053 seconds)

11—20 of 603 matching pages

11: 30.3 Eigenvalues
30.3.11 8 = 2 ( 4 m 2 1 ) 2 A + 1 16 B + 1 8 C + 1 2 D ,
A = ( n m 1 ) ( n m ) ( n + m 1 ) ( n + m ) ( 2 n 5 ) 2 ( 2 n 3 ) ( 2 n 1 ) 7 ( 2 n + 1 ) ( 2 n + 3 ) 2 ( n m + 1 ) ( n m + 2 ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 1 ) 2 ( 2 n + 1 ) ( 2 n + 3 ) 7 ( 2 n + 5 ) ( 2 n + 7 ) 2 ,
B = ( n m 3 ) ( n m 2 ) ( n m 1 ) ( n m ) ( n + m 3 ) ( n + m 2 ) ( n + m 1 ) ( n + m ) ( 2 n 7 ) ( 2 n 5 ) 2 ( 2 n 3 ) 3 ( 2 n 1 ) 4 ( 2 n + 1 ) ( n m + 1 ) ( n m + 2 ) ( n m + 3 ) ( n m + 4 ) ( n + m + 1 ) ( n + m + 2 ) ( n + m + 3 ) ( n + m + 4 ) ( 2 n + 1 ) ( 2 n + 3 ) 4 ( 2 n + 5 ) 3 ( 2 n + 7 ) 2 ( 2 n + 9 ) ,
C = ( n m + 1 ) 2 ( n m + 2 ) 2 ( n + m + 1 ) 2 ( n + m + 2 ) 2 ( 2 n + 1 ) 2 ( 2 n + 3 ) 7 ( 2 n + 5 ) 2 ( n m 1 ) 2 ( n m ) 2 ( n + m 1 ) 2 ( n + m ) 2 ( 2 n 3 ) 2 ( 2 n 1 ) 7 ( 2 n + 1 ) 2 ,
D = ( n m 1 ) ( n m ) ( n m + 1 ) ( n m + 2 ) ( n + m 1 ) ( n + m ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 3 ) ( 2 n 1 ) 4 ( 2 n + 1 ) 2 ( 2 n + 3 ) 4 ( 2 n + 5 ) .
12: 12.10 Uniform Asymptotic Expansions for Large Parameter
and the coefficients 𝒜 ~ s ( t ) and ~ s ( t ) are given by … and the coefficients 𝖠 s ( τ ) are the product of τ s and a polynomial in τ of degree 2 s . …starting with 𝖠 0 ( τ ) = 1 . … The coefficients A s ( ζ ) and B s ( ζ ) are given by …The coefficients C s ( ζ ) and D s ( ζ ) in (12.10.36) and (12.10.38) are given by …
13: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
14: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • F. Alhargan and S. Judah (1992) Frequency response characteristics of the multiport planar elliptic patch. IEEE Trans. Microwave Theory Tech. 40 (8), pp. 1726–1730.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • 15: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …
    16: 10.41 Asymptotic Expansions for Large Order
    U k + 1 ( p ) = 1 2 p 2 ( 1 p 2 ) U k ( p ) + 1 8 0 p ( 1 5 t 2 ) U k ( t ) d t ,
    U 3 ( p ) = 1 4 14720 ( 30375 p 3 3 69603 p 5 + 7 65765 p 7 4 25425 p 9 ) ,
    V 1 ( p ) = 1 24 ( 9 p + 7 p 3 ) ,
    The curve E 1 B E 2 in the z -plane is the upper boundary of the domain 𝐊 depicted in Figure 10.20.3 and rotated through an angle 1 2 π . … This is because A k ( ζ ) and ζ 1 2 B k ( ζ ) , k = 0 , 1 , , do not form an asymptotic scale (§2.1(v)) as ζ + ; see Olver (1997b, pp. 422–425). …
    17: 24.2 Definitions and Generating Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    8 1 30 1385
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    8 1 30 3.33333 3333 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    8 1385
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    18: 19.27 Asymptotic Approximations and Expansions
    §19.27(ii) R F ( x , y , z )
    19.27.2 R F ( x , y , z ) = 1 2 z ( ln 8 z a + g ) ( 1 + O ( a z ) ) , a / z 0 .
    19.27.6 R G ( 0 , y , z ) = z 2 + y 8 z ( ln ( 16 z y ) 1 ) ( 1 + O ( y z ) ) , y / z 0 .
    §19.27(iv) R D ( x , y , z )
    19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
    19: 19.29 Reduction of General Elliptic Integrals
    The advantages of symmetric integrals for tables of integrals and symbolic integration are illustrated by (19.29.4) and its cubic case, which replace the 8 + 8 + 12 = 28 formulas in Gradshteyn and Ryzhik (2000, 3.147, 3.131, 3.152) after taking x 2 as the variable of integration in 3. …where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … The first choice gives a formula that includes the 18+9+18 = 45 formulas in Gradshteyn and Ryzhik (2000, 3.133, 3.156, 3.158), and the second choice includes the 8+8+8+12 = 36 formulas in Gradshteyn and Ryzhik (2000, 3.151, 3.149, 3.137, 3.157) (after setting x 2 = t in some cases). … where …(The variables of R F are real and nonnegative unless both Q ’s have real zeros and those of Q 1 interlace those of Q 2 .) …
    20: 3.7 Ordinary Differential Equations
    where f , g , and h are analytic functions in a domain D . … Assume that we wish to integrate (3.7.1) along a finite path 𝒫 from z = a to z = b in a domain D . The path is partitioned at P + 1 points labeled successively z 0 , z 1 , , z P , with z 0 = a , z P = b . … where 𝐀 ( τ , z ) is the matrix … Let 𝐀 P be the ( 2 P ) × ( 2 P + 2 ) band matrix …