About the Project

%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%8C%BA%E5%9D%97%E9%93%BE%E8%B5%8C%E5%9C%BA,%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8D%9A%E5%BD%A9%E7%BD%91%E7%AB%99,%E3%80%90%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8D%9A%E5%BD%A9%E5%9C%B0%E5%9D%80%E2%88%B633kk66.com%E3%80%91%E5%8C%BA%E5%9D%97%E9%93%BE%E8%B5%8C%E5%9C%BA,%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8D%9A%E5%BD%A9%E9%A1%B9%E7%9B%AE,%E5%8E%BB%E4%B8%AD%E5%BF%83%E5%8C%96%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E5%8C%BA%E5%9D%97%E9%93%BE%E6%B8%B8%E6%88%8F,%E5%8C%BA%E5%9D%97%E9%93%BE%E5%BD%A9%E7%A5%A8%E5%8C%BA%E5%9D%97%E9%93%BE%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E2%88%B633kk66.com%E3%80%91

AdvancedHelp

(0.064 seconds)

11—20 of 783 matching pages

11: 21.5 Modular Transformations
β–ΊLet 𝐀 , 𝐁 , 𝐂 , and 𝐃 be g × g matrices with integer elements such that …Here ΞΎ ⁑ ( πšͺ ) is an eighth root of unity, that is, ( ΞΎ ⁑ ( πšͺ ) ) 8 = 1 . For general πšͺ , it is difficult to decide which root needs to be used. … β–Ί( 𝐀 invertible with integer elements.) …For a g × g matrix 𝐀 we define diag ⁒ 𝐀 , as a column vector with the diagonal entries as elements. …
12: 32.9 Other Elementary Solutions
β–Ίwith C an arbitrary constant, which is solvable by quadrature. … P III  with Ξ± = Ξ² = Ξ³ = Ξ΄ = 0 , has the general solution w ⁑ ( z ) = C ⁒ z ΞΌ , with C and ΞΌ arbitrary constants. … β–Ί
32.9.7 w ⁑ ( z ; μ , 1 8 , μ ⁒ κ 2 , 0 ) = 1 + κ ⁒ z 1 / 2 ,
β–Ίwith C an arbitrary constant, which is solvable by quadrature. … P V , with Ξ± = Ξ² = 0 and Ξ³ 2 + 2 ⁒ Ξ΄ = 0 , has solutions w ⁑ ( z ) = C ⁒ exp ⁑ ( ± 2 ⁒ Ξ΄ ⁒ z ) , with C an arbitrary constant. …
13: 33.10 Limiting Forms for Large ρ or Large | η |
β–Ί
F β„“ ⁑ ( Ξ· , ρ ) ( 2 ⁒ β„“ + 1 ) ! ⁒ C β„“ ⁑ ( Ξ· ) ( 2 ⁒ Ξ· ) β„“ + 1 ⁒ ( 2 ⁒ Ξ· ⁒ ρ ) 1 / 2 ⁒ I 2 ⁒ β„“ + 1 ⁑ ( ( 8 ⁒ Ξ· ⁒ ρ ) 1 / 2 ) ,
β–Ί
G β„“ ⁑ ( Ξ· , ρ ) 2 ⁒ ( 2 ⁒ Ξ· ) β„“ ( 2 ⁒ β„“ + 1 ) ! ⁒ C β„“ ⁑ ( Ξ· ) ⁒ ( 2 ⁒ Ξ· ⁒ ρ ) 1 / 2 ⁒ K 2 ⁒ β„“ + 1 ⁑ ( ( 8 ⁒ Ξ· ⁒ ρ ) 1 / 2 ) .
β–Ί
F 0 ⁑ ( Ξ· , ρ ) e Ο€ ⁒ Ξ· ⁒ ( Ο€ ⁒ ρ ) 1 / 2 ⁒ I 1 ⁑ ( ( 8 ⁒ Ξ· ⁒ ρ ) 1 / 2 ) ,
β–Ί
F β„“ ⁑ ( Ξ· , ρ ) = ( 2 ⁒ β„“ + 1 ) ! ⁒ C β„“ ⁑ ( Ξ· ) ( 2 ⁒ Ξ· ) β„“ + 1 ⁒ ( ( 2 ⁒ Ξ· ⁒ ρ ) 1 / 2 ⁒ J 2 ⁒ β„“ + 1 ⁑ ( ( 8 ⁒ Ξ· ⁒ ρ ) 1 / 2 ) + o ⁑ ( | Ξ· | 1 / 4 ) ) ,
β–Ί
G β„“ ⁑ ( Ξ· , ρ ) = Ο€ ⁒ ( 2 ⁒ Ξ· ) β„“ ( 2 ⁒ β„“ + 1 ) ! ⁒ C β„“ ⁑ ( Ξ· ) ⁒ ( ( 2 ⁒ Ξ· ⁒ ρ ) 1 / 2 ⁒ Y 2 ⁒ β„“ + 1 ⁑ ( ( 8 ⁒ Ξ· ⁒ ρ ) 1 / 2 ) + o ⁑ ( | Ξ· | 1 / 4 ) ) .
14: 18.8 Differential Equations
β–Ί
Table 18.8.1: Classical OP’s: differential equations A ⁑ ( x ) ⁒ f ′′ ⁑ ( x ) + B ⁑ ( x ) ⁒ f ⁑ ( x ) + C ⁑ ( x ) ⁒ f ⁑ ( x ) + Ξ» n ⁒ f ⁑ ( x ) = 0 .
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
# f ⁑ ( x ) A ⁑ ( x ) B ⁑ ( x ) C ⁑ ( x ) λ n
4 C n ( λ ) ⁑ ( x ) 1 x 2 ( 2 ⁒ λ + 1 ) ⁒ x 0 n ⁒ ( n + 2 ⁒ λ )
8 L n ( α ) ⁑ ( x ) x α + 1 x 0 n
9 e 1 2 ⁒ x 2 ⁒ x α + 1 2 ⁒ L n ( α ) ⁑ ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) ⁒ x 2 4 ⁒ n + 2 ⁒ α + 2
β–Ί
15: 9.4 Maclaurin Series
β–Ί
9.4.1 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.2 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) ,
β–Ί
9.4.3 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.4 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) .
16: 28.8 Asymptotic Expansions for Large q
β–ΊAlso let ΞΎ = 2 ⁒ h ⁒ cos ⁑ x and D m ⁑ ( ΞΎ ) = e ΞΎ 2 / 4 ⁒ 𝐻𝑒 m ⁑ ( ΞΎ ) 18.3). … β–Ί
28.8.4 U m ⁑ ( ΞΎ ) D m ⁑ ( ΞΎ ) 1 2 6 ⁒ h ⁒ ( D m + 4 ⁑ ( ΞΎ ) 4 ! ⁒ ( m 4 ) ⁒ D m 4 ⁑ ( ΞΎ ) ) + 1 2 13 ⁒ h 2 ⁒ ( D m + 8 ⁑ ( ΞΎ ) 2 5 ⁒ ( m + 2 ) ⁒ D m + 4 ⁑ ( ΞΎ ) + 4 ! ⁒  2 5 ⁒ ( m 1 ) ⁒ ( m 4 ) ⁒ D m 4 ⁑ ( ΞΎ ) + 8 ! ⁒ ( m 8 ) ⁒ D m 8 ⁑ ( ΞΎ ) ) + β‹― ,
β–Ί
28.8.6 C ^ m ( Ο€ ⁒ h 2 ⁒ ( m ! ) 2 ) 1 / 4 ⁒ ( 1 + 2 ⁒ m + 1 8 ⁒ h + m 4 + 2 ⁒ m 3 + 263 ⁒ m 2 + 262 ⁒ m + 108 2048 ⁒ h 2 + β‹― ) 1 / 2 ,
β–Ί
28.8.7 S ^ m ( Ο€ ⁒ h 2 ⁒ ( m ! ) 2 ) 1 / 4 ⁒ ( 1 2 ⁒ m + 1 8 ⁒ h + m 4 + 2 ⁒ m 3 121 ⁒ m 2 122 ⁒ m 84 2048 ⁒ h 2 + β‹― ) 1 / 2 .
β–ΊIt is stated that corresponding uniform approximations can be obtained for other solutions, including the eigensolutions, of the differential equations by application of the results, but these approximations are not included. …
17: 19.36 Methods of Computation
β–ΊIf (19.36.1) is used instead of its first five terms, then the factor ( 3 ⁒ r ) 1 / 6 in Carlson (1995, (2.2)) is changed to ( 3 ⁒ r ) 1 / 8 . β–ΊFor both R D and R J the factor ( r / 4 ) 1 / 6 in Carlson (1995, (2.18)) is changed to ( r / 5 ) 1 / 8 when the following polynomial of degree 7 (the same for both) is used instead of its first seven terms: … β–ΊAll cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). … β–ΊThe step from n to n + 1 is an ascending Landen transformation if ΞΈ = 1 (leading ultimately to a hyperbolic case of R C ) or a descending Gauss transformation if ΞΈ = 1 (leading to a circular case of R C ). … β–ΊHere R C is computed either by the duplication algorithm in Carlson (1995) or via (19.2.19). …
18: 19.17 Graphics
β–ΊFor R F , R G , and R J , which are symmetric in x , y , z , we may further assume that z is the largest of x , y , z if the variables are real, then choose z = 1 , and consider only 0 x 1 and 0 y 1 . … β–ΊTo view R F ⁑ ( 0 , y , 1 ) and 2 ⁒ R G ⁑ ( 0 , y , 1 ) for complex y , put y = 1 k 2 , use (19.25.1), and see Figures 19.3.719.3.12. … β–ΊTo view R F ⁑ ( 0 , y , 1 ) and 2 ⁒ R G ⁑ ( 0 , y , 1 ) for complex y , put y = 1 k 2 , use (19.25.1), and see Figures 19.3.719.3.12. … β–Ί
β–ΊSee accompanying textβ–Ί
Figure 19.17.4: R J ⁑ ( x , y , 1 , 2 ) for 0 x 1 , y = 0 ,  0.1 ,  0.5 ,  1 . y = 1 corresponds to 3 ⁒ ( R C ⁑ ( x , 1 ) R C ⁑ ( x , 2 ) ) . Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 19.17.7: Cauchy principal value of R J ⁑ ( 0.5 , y , 1 , p ) for y = 0 ,  0.01 ,  0.05 ,  0.2 ,  1 , 1 p < 0 . y = 1 corresponds to 3 ⁒ ( R C ⁑ ( 0.5 , p ) ( Ο€ / 8 ) ) / ( 1 p ) . … Magnify
19: 27.2 Functions
β–Ί( Ξ½ ⁑ ( 1 ) is defined to be 0.) …It can be expressed as a sum over all primes p x : … β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . …
20: 19.26 Addition Theorems
β–ΊIn this subsection, and also §§19.26(ii) and 19.26(iii), we assume that Ξ» , x , y , z are positive, except that at most one of x , y , z can be 0. …where 0 < Ξ³ 2 ΞΈ < Ξ³ 2 for Ξ³ = Ξ± , Ξ² , Οƒ , except that Οƒ 2 ΞΈ can be 0, and … β–ΊAn equivalent version for R C is … β–Ίeither upper or lower signs being taken throughout. … β–Ί
19.26.25 R C ⁑ ( x , y ) = 2 ⁒ R C ⁑ ( x + λ , y + λ ) , λ = y + 2 ⁒ x ⁒ y .