About the Project

%E4%BA%94%E5%AD%90%E6%A3%8B%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A%E4%BA%94%E5%AD%90%E6%A3%8B%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%EF%BC%9A33kk55.com%E3%80%91%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%9C%A8%E7%BA%BF%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,%E4%BA%94%E5%AD%90%E6%A3%8B%E6%B8%B8%E6%88%8F%E7%8E%A9%E6%B3%95%E4%BB%8B%E7%BB%8D,%E7%9C%9F%E4%BA%BA%E4%BA%94%E5%AD%90%E6%A3%8B%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0%E7%BD%91%E5%9D%80YyMsyAAMsACBVXCh

AdvancedHelp

(0.088 seconds)

11—20 of 674 matching pages

11: 23 Weierstrass Elliptic and Modular
Functions
12: 19.36 Methods of Computation
β–ΊFor R F the polynomial of degree 7, for example, is … β–ΊAll cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). … β–ΊThe incomplete integrals R F ⁑ ( x , y , z ) and R G ⁑ ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … β–Ί F ⁑ ( Ο• , k ) can be evaluated by using (19.25.5). …A summary for F ⁑ ( Ο• , k ) is given in Gautschi (1975, §3). …
13: 3.3 Interpolation
β–ΊIf f is analytic in a simply-connected domain D 1.13(i)), then for z D , …where C is a simple closed contour in D described in the positive rotational sense and enclosing the points z , z 1 , z 2 , , z n . … β–Ίwhere Ο‰ n + 1 ⁑ ( ΞΆ ) is given by (3.3.3), and C is a simple closed contour in D described in the positive rotational sense and enclosing z 0 , z 1 , , z n . … β–ΊBy using this approximation to x as a new point, x 3 = x , and evaluating [ f 0 , f 1 , f 2 , f 3 ] ⁑ x = 1.12388 6190 , we find that x = 2.33810 7409 , with 9 correct digits. … β–ΊThen by using x 3 in Newton’s interpolation formula, evaluating [ x 0 , x 1 , x 2 , x 3 ] ⁑ f = 0.26608 28233 and recomputing f ⁒ ( x ) , another application of Newton’s rule with starting value x 3 gives the approximation x = 2.33810 7373 , with 8 correct digits. …
14: 14.33 Tables
β–Ί
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–8D; 𝖯 n ⁑ ( x ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–7D; 𝖰 n ⁑ ( x ) and 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 6–8D; P n ⁑ ( x ) and P n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 5 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S; Q n ⁑ ( x ) and Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S. (Here primes denote derivatives with respect to x .)

  • β–Ί
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 0 ⁒ ( .1 ) ⁒ 1 , 7D; 𝖯 n ⁑ ( cos ⁑ ΞΈ ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 0 ⁒ ( .1 ) ⁒ 0.9 , 8S; 𝖰 n ⁑ ( cos ⁑ ΞΈ ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖯 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n m = 0 ⁒ ( 1 ) ⁒ 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , 8S; 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) for m = 0 ⁒ ( 1 ) ⁒ 3 , Ξ½ = 0 ⁒ ( .25 ) ⁒ 5 , ΞΈ = 0 ⁒ ( 15 ∘ ) ⁒ 90 ∘ , 5D; P n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 1 ⁒ ( 1 ) ⁒ 10 , 7S; Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 2 ⁒ ( 1 ) ⁒ 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 Ξ½ -zeros of 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) and of its derivative for m = 0 ⁒ ( 1 ) ⁒ 4 , ΞΈ = 10 ∘ , 30 ∘ , 150 ∘ .

  • β–Ί
  • Belousov (1962) tabulates 𝖯 n m ⁑ ( cos ⁑ ΞΈ ) (normalized) for m = 0 ⁒ ( 1 ) ⁒ 36 , n m = 0 ⁒ ( 1 ) ⁒ 56 , ΞΈ = 0 ⁒ ( 2.5 ∘ ) ⁒ 90 ∘ , 6D.

  • 15: 18.8 Differential Equations
    β–Ί
    Table 18.8.1: Classical OP’s: differential equations A ⁑ ( x ) ⁒ f ′′ ⁑ ( x ) + B ⁑ ( x ) ⁒ f ⁑ ( x ) + C ⁑ ( x ) ⁒ f ⁑ ( x ) + Ξ» n ⁒ f ⁑ ( x ) = 0 .
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    # f ⁑ ( x ) A ⁑ ( x ) B ⁑ ( x ) C ⁑ ( x ) λ n
    4 C n ( λ ) ⁑ ( x ) 1 x 2 ( 2 ⁒ λ + 1 ) ⁒ x 0 n ⁒ ( n + 2 ⁒ λ )
    8 L n ( α ) ⁑ ( x ) x α + 1 x 0 n
    9 e 1 2 ⁒ x 2 ⁒ x α + 1 2 ⁒ L n ( α ) ⁑ ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) ⁒ x 2 4 ⁒ n + 2 ⁒ α + 2
    β–Ί
    16: 15.3 Graphics
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.1: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.2: F ⁑ ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.3: F ⁑ ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 15.3.4: F ⁑ ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 15.3.5: F ⁑ ( 4 3 , 9 16 ; 14 5 ; x + i ⁒ y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
    17: Bibliography T
    β–Ί
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • β–Ί
  • I. Thompson (2013) Algorithm 926: incomplete gamma functions with negative arguments. ACM Trans. Math. Software 39 (2), pp. Art. 14, 9.
  • β–Ί
  • W. J. Thompson (1994) Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • β–Ί
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ⁒ ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • β–Ί
  • A. A. TuαΊ‘ilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 18: Bibliography
    β–Ί
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ⁒ ( x ) and Bickley functions Ki n ⁒ ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • β–Ί
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 19: 18.5 Explicit Representations
    β–ΊIn (18.5.4_5) see §26.11 for the Fibonacci numbers F n . … β–ΊIn this equation w ⁑ ( x ) is as in Table 18.3.1, (reproduced in Table 18.5.1), and F ⁑ ( x ) , ΞΊ n are as in Table 18.5.1. … β–ΊFor the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. … β–Ί β–ΊSimilarly in the cases of the ultraspherical polynomials C n ( Ξ» ) ⁑ ( x ) and the Laguerre polynomials L n ( Ξ± ) ⁑ ( x ) we assume that Ξ» > 1 2 , Ξ» 0 , and Ξ± > 1 , unless stated otherwise. …
    20: 3.4 Differentiation
    β–ΊThe B k n are the differentiated Lagrangian interpolation coefficients: …where A k n is as in (3.3.10). … β–Ί
    B 2 6 = 1 60 ⁒ ( 9 9 ⁒ t 30 ⁒ t 2 + 20 ⁒ t 3 + 5 ⁒ t 4 3 ⁒ t 5 ) ,
    β–Ίwhere C is a simple closed contour described in the positive rotational sense such that C and its interior lie in the domain of analyticity of f , and x 0 is interior to C . Taking C to be a circle of radius r centered at x 0 , we obtain …