About the Project

hargrav generic diagram is good visit driver-main.aspx

AdvancedHelp

(0.004 seconds)

1—10 of 404 matching pages

1: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
§8.19(ii) Graphics
§8.19(ix) Inequalities
§8.19(x) Integrals
§8.19(xi) Further Generalizations
2: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Polynomials
Note also that any partial sum of the generalized hypergeometric series can be represented as a generalized hypergeometric function via …
§16.2(v) Behavior with Respect to Parameters
3: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(i) Definitions: General Values
§8.21(iv) Interrelations
§8.21(v) Special Values
4: 1.16 Distributions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , … More generally, for α : [ a , b ] [ , ] a nondecreasing function the corresponding Lebesgue–Stieltjes measure μ α (see §1.4(v)) can be considered as a distribution: … More generally, if α ( x ) is an infinitely differentiable function, then … Friedman (1990) gives an overview of generalized functions and their relation to distributions. …
5: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(i) Definition
Convergence Properties
§35.8(iv) General Properties
Confluence
6: 19.2 Definitions
§19.2(i) General Elliptic Integrals
7: 29.16 Asymptotic Expansions
Hargrave and Sleeman (1977) give asymptotic approximations for Lamé polynomials and their eigenvalues, including error bounds. …
8: 16.24 Physical Applications
§16.24 Physical Applications
§16.24(i) Random Walks
§16.24(ii) Loop Integrals in Feynman Diagrams
Appell functions are used for the evaluation of one-loop integrals in Feynman diagrams. …
§16.24(iii) 3 j , 6 j , and 9 j Symbols
9: 29.19 Physical Applications
Hargrave (1978) studies high frequency solutions of the delta wing equation. …
10: Bibliography H
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.