About the Project

with respect to degree or order

AdvancedHelp

(0.004 seconds)

41—50 of 290 matching pages

41: 10.69 Uniform Asymptotic Expansions for Large Order
§10.69 Uniform Asymptotic Expansions for Large Order
42: 14.1 Special Notation
§14.1 Special Notation
x , y , τ real variables.
m , n unless stated otherwise, nonnegative integers, used for order and degree, respectively.
μ , ν general order and degree, respectively.
43: 22.10 Maclaurin Series
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,
44: 2.1 Definitions and Elementary Properties
§2.1(i) Asymptotic and Order Symbols
As x c in 𝐗
2.1.2 f ( x ) = o ( ϕ ( x ) ) f ( x ) / ϕ ( x ) 0 .
§2.1(ii) Integration and Differentiation
Integration of asymptotic and order relations is permissible, subject to obvious convergence conditions. …
45: 10.64 Integral Representations
46: Bibliography Q
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 47: 13.2 Definitions and Basic Properties
    13.2.15 U ( n + b 1 , b , z ) = ( 1 ) n ( 2 b ) n z 1 b + O ( z 2 b ) .
    13.2.16 U ( a , b , z ) = Γ ( b 1 ) Γ ( a ) z 1 b + O ( z 2 b ) , b 2 , b 2 ,
    13.2.17 U ( a , 2 , z ) = 1 Γ ( a ) z 1 + O ( ln z ) ,
    48: 2.10 Sums and Sequences
    2.10.15 j α ( j + 1 ) α = α j α 1 + α ( α 1 ) O ( j α 2 )
    2.10.17 S ( α , β , n ) = O ( n α ) + O ( 1 ) .
    2.10.29 f n = g n + o ( r n ) , n ± .
  • (b´)

    On the circle | z | = r , the function f ( z ) g ( z ) has a finite number of singularities, and at each singularity z j , say,

    2.10.30 f ( z ) g ( z ) = O ( ( z z j ) σ j 1 ) , z z j ,

    where σ j is a positive constant.

  • 2.10.32 f ( m ) ( z ) g ( m ) ( z ) = O ( ( z z j ) σ j 1 ) ,
    49: 24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    §24.14(ii) Higher-Order Recurrence Relations
    These identities can be regarded as higher-order recurrences. …
    50: 30.3 Eigenvalues