About the Project

with a parameter

AdvancedHelp

(0.017 seconds)

31—40 of 356 matching pages

31: 31.1 Special Notation
x , y real variables.
a complex parameter, | a | 1 , a 1 .
32: 28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
28.25.4 z + , π + δ ph h + z 2 π δ ,
28.25.5 z + , 2 π + δ ph h + z π δ ,
33: 28.4 Fourier Series
28.4.19 A 2 m + 1 2 n + 1 ( q ) = ( 1 ) n m B 2 m + 1 2 n + 1 ( q ) ,
28.4.20 B 2 m + 1 2 n + 1 ( q ) = ( 1 ) n m A 2 m + 1 2 n + 1 ( q ) .
28.4.21 A 2 s 0 ( q ) = ( ( 1 ) s 2 ( s ! ) 2 ( q 4 ) s + O ( q s + 2 ) ) A 0 0 ( q ) ,
28.4.22 A m + 2 s m ( q ) B m + 2 s m ( q ) } = ( ( 1 ) s m ! s ! ( m + s ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) ,
28.4.23 A m 2 s m ( q ) B m 2 s m ( q ) } = ( ( m s 1 ) ! s ! ( m 1 ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) .
34: 28.15 Expansions for Small q
28.15.2 a ν 2 q 2 a ( ν + 2 ) 2 q 2 a ( ν + 4 ) 2 = q 2 a ( ν 2 ) 2 q 2 a ( ν 4 ) 2 .
35: 24.17 Mathematical Applications
Let 0 h 1 and a , m , and n be integers such that n > a , m > 0 , and f ( m ) ( x ) is absolutely integrable over [ a , n ] . …
24.17.1 j = a n 1 ( 1 ) j f ( j + h ) = 1 2 k = 0 m 1 E k ( h ) k ! ( ( 1 ) n 1 f ( k ) ( n ) + ( 1 ) a f ( k ) ( a ) ) + R m ( n ) ,
36: Tom H. Koornwinder
Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
37: 11.7 Integrals and Sums
11.7.14 0 e a t 𝐇 1 ( t ) d t = 2 π a 2 a π 1 + a 2 ln ( 1 + 1 + a 2 a ) ,
11.7.15 0 e a t 𝐋 0 ( t ) d t = 2 π a 2 1 arcsin ( 1 a ) ,
38: 15.1 Special Notation
39: 33.19 Power-Series Expansions in r
33.19.3 2 π h ( ϵ , ; r ) = k = 0 2 ( 2 k ) ! γ k k ! ( 2 r ) k k = 0 δ k r k + + 1 A ( ϵ , ) ( 2 ln | 2 r / κ | + ψ ( + 1 + κ ) + ψ ( + κ ) ) f ( ϵ , ; r ) , r 0 .
33.19.6 k ( k + 2 + 1 ) δ k + 2 δ k 1 + ϵ δ k 2 + 2 ( 2 k + 2 + 1 ) A ( ϵ , ) α k = 0 , k = 2 , 3 , ,
40: 31.15 Stieltjes Polynomials
If z 1 , z 2 , , z n are the zeros of an n th degree Stieltjes polynomial S ( z ) , then every zero z k is either one of the parameters a j or a solution of the system of equations
31.15.2 j = 1 N γ j / 2 z k a j + j = 1 j k n 1 z k z j = 0 , k = 1 , 2 , , n .
31.15.6 a j < a j + 1 , j = 1 , 2 , , N 1 ,
If the exponent and singularity parameters satisfy (31.15.5)–(31.15.6), then for every multi-index 𝐦 = ( m 1 , m 2 , , m N 1 ) , where each m j is a nonnegative integer, there is a unique Stieltjes polynomial with m j zeros in the open interval ( a j , a j + 1 ) for each j = 1 , 2 , , N 1 . …