About the Project

ultraspherical

AdvancedHelp

(0.000 seconds)

1—10 of 33 matching pages

1: 18.3 Definitions
§18.3 Definitions
This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
2: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1. …
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
C n ( λ ) ( x ) ( 1 ) n C n ( λ ) ( x ) ( 2 λ ) n / n ! ( 1 ) n ( λ ) n / n ! 2 ( 1 ) n ( λ ) n + 1 / n !
§18.6(ii) Limits to Monomials
18.6.4 lim λ C n ( λ ) ( x ) C n ( λ ) ( 1 ) = x n ,
3: 18.7 Interrelations and Limit Relations
Ultraspherical and Jacobi
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi
Ultraspherical Hermite
Ultraspherical Chebyshev
4: 18.1 Notation
  • Ultraspherical (or Gegenbauer): C n ( λ ) ( x ) .

  • Continuous q -Ultraspherical: C n ( x ; β | q ) .

  • In Szegő (1975, §4.7) the ultraspherical polynomials C n ( λ ) ( x ) are denoted by P n ( λ ) ( x ) . The ultraspherical polynomials will not be considered for λ = 0 . They are defined in the literature by C 0 ( 0 ) ( x ) = 1 and …
    5: 18.9 Recurrence Relations and Derivatives
    Ultraspherical
    18.9.7 ( n + λ ) C n ( λ ) ( x ) = λ ( C n ( λ + 1 ) ( x ) C n 2 ( λ + 1 ) ( x ) ) ,
    18.9.8 4 λ ( n + λ + 1 ) ( 1 x 2 ) C n ( λ + 1 ) ( x ) = ( n + 1 ) ( n + 2 ) C n + 2 ( λ ) ( x ) + ( n + 2 λ ) ( n + 2 λ + 1 ) C n ( λ ) ( x ) .
    Ultraspherical
    18.9.19 d d x C n ( λ ) ( x ) = 2 λ C n 1 ( λ + 1 ) ( x ) ,
    6: 18.10 Integral Representations
    Ultraspherical
    18.10.1 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = 2 α + 1 2 Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) ( sin θ ) 2 α 0 θ cos ( ( n + α + 1 2 ) ϕ ) ( cos ϕ cos θ ) α + 1 2 d ϕ , 0 < θ < π , α > 1 2 .
    Ultraspherical
    18.10.4 P n ( α , α ) ( cos θ ) P n ( α , α ) ( 1 ) = C n ( α + 1 2 ) ( cos θ ) C n ( α + 1 2 ) ( 1 ) = Γ ( α + 1 ) π 1 2 Γ ( α + 1 2 ) 0 π ( cos θ + i sin θ cos ϕ ) n ( sin ϕ ) 2 α d ϕ , α > 1 2 .
    Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
    p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
    7: 18.18 Sums
    Ultraspherical
    Ultraspherical
    Ultraspherical
    Ultraspherical
    18.18.29 = 0 n C ( λ ) ( x ) C n ( μ ) ( x ) = C n ( λ + μ ) ( x ) ,
    8: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    4 C n ( λ ) ( x ) 1 x 2 ( 2 λ + 1 ) x 0 n ( n + 2 λ )
    9: 18.17 Integrals
    Ultraspherical
    Ultraspherical
    Ultraspherical
    Ultraspherical
    Ultraspherical
    10: 18.12 Generating Functions
    The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. …
    Ultraspherical
    18.12.4 ( 1 2 x z + z 2 ) λ = n = 0 C n ( λ ) ( x ) z n = n = 0 ( 2 λ ) n ( λ + 1 2 ) n P n ( λ 1 2 , λ 1 2 ) ( x ) z n , | z | < 1 .
    18.12.5 1 x z ( 1 2 x z + z 2 ) λ + 1 = n = 0 n + 2 λ 2 λ C n ( λ ) ( x ) z n , | z | < 1 .
    18.12.6 Γ ( λ + 1 2 ) e z cos θ ( 1 2 z sin θ ) 1 2 λ J λ 1 2 ( z sin θ ) = n = 0 C n ( λ ) ( cos θ ) ( 2 λ ) n z n , 0 θ π .