About the Project

trigonometric functions

AdvancedHelp

(0.018 seconds)

21—30 of 339 matching pages

21: 19.10 Relations to Other Functions
22: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.3 d d z tanh z = sech 2 z ,
4.34.4 d d z csch z = csch z coth z ,
23: 4.25 Continued Fractions
§4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
See Lorentzen and Waadeland (1992, pp. 560–571) for other continued fractions involving inverse trigonometric functions. …
24: 4.45 Methods of Computation
Trigonometric Functions
The other trigonometric functions can be found from the definitions (4.14.4)–(4.14.7).
Inverse Trigonometric Functions
The function arctan x can always be computed from its ascending power series after preliminary transformations to reduce the size of x . … For the remaining inverse trigonometric functions, we may use the identities provided by the fourth row of Table 4.16.3. …
25: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
26: 4.26 Integrals
§4.26(ii) Indefinite Integrals
§4.26(iii) Definite Integrals
Orthogonality Properties
§4.26(iv) Inverse Trigonometric Functions
Extensive compendia of indefinite and definite integrals of trigonometric and inverse trigonometric functions include Apelblat (1983, pp. 48–109), Bierens de Haan (1939), Gradshteyn and Ryzhik (2000, Chapters 2–4), Gröbner and Hofreiter (1949, pp. 116–139), Gröbner and Hofreiter (1950, pp. 94–160), and Prudnikov et al. (1986a, §§1.5, 1.7, 2.5, 2.7).
27: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.10 θ 1 ( z , q ) θ 1 ( z , q ) cot z = 4 sin ( 2 z ) n = 1 q 2 n 1 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 q 2 n 1 q 2 n sin ( 2 n z ) ,
20.5.11 θ 2 ( z , q ) θ 2 ( z , q ) + tan z = 4 sin ( 2 z ) n = 1 q 2 n 1 + 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 ( 1 ) n q 2 n 1 q 2 n sin ( 2 n z ) .
20.5.12 θ 3 ( z , q ) θ 3 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 ( 1 ) n q n 1 q 2 n sin ( 2 n z ) ,
20.5.13 θ 4 ( z , q ) θ 4 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 q n 1 q 2 n sin ( 2 n z ) .
28: 4.19 Maclaurin Series and Laurent Series
§4.19 Maclaurin Series and Laurent Series
4.19.1 sin z = z z 3 3 ! + z 5 5 ! z 7 7 ! + ,
4.19.2 cos z = 1 z 2 2 ! + z 4 4 ! z 6 6 ! + .
4.19.7 ln ( sin z z ) = n = 1 ( 1 ) n 2 2 n 1 B 2 n n ( 2 n ) ! z 2 n , | z | < π ,
4.19.9 ln ( tan z z ) = n = 1 ( 1 ) n 1 2 2 n ( 2 2 n 1 1 ) B 2 n n ( 2 n ) ! z 2 n , | z | < 1 2 π .
29: 4.24 Inverse Trigonometric Functions: Further Properties
§4.24 Inverse Trigonometric Functions: Further Properties
§4.24(i) Power Series
§4.24(ii) Derivatives
§4.24(iii) Addition Formulas
4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
30: 10.12 Generating Function and Associated Series
§10.12 Generating Function and Associated Series
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .