About the Project

terminant%20function

AdvancedHelp

(0.003 seconds)

11—20 of 962 matching pages

11: 15.2 Definitions and Analytical Properties
§15.2(i) Gauss Series
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss series … … On the circle of convergence, | z | = 1 , the Gauss series: …
§15.2(ii) Analytic Properties
12: 5.12 Beta Function
§5.12 Beta Function
Euler’s Beta Integral
See accompanying text
Figure 5.12.1: t -plane. Contour for first loop integral for the beta function. Magnify
See accompanying text
Figure 5.12.2: t -plane. Contour for second loop integral for the beta function. Magnify
Pochhammer’s Integral
13: 14.20 Conical (or Mehler) Functions
§14.20 Conical (or Mehler) Functions
§14.20(i) Definitions and Wronskians
§14.20(ii) Graphics
§14.20(x) Zeros and Integrals
14: 10.1 Special Notation
(For other notation see Notation for the Special Functions.) … For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. For the other functions when the order ν is replaced by n , it can be any integer. For the Kelvin functions the order ν is always assumed to be real. … For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
15: 4.2 Definitions
§4.2(iii) The Exponential Function
§4.2(iv) Powers
Powers with General Bases
16: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Then the series (16.2.1) terminates and the generalized hypergeometric function is a polynomial in z . … However, when one or more of the top parameters a j is a nonpositive integer the series terminates and the generalized hypergeometric function is a polynomial in z . Note that if m is the value of the numerically largest a j that is a nonpositive integer, then the identity …
17: 1.10 Functions of a Complex Variable
Analytic Functions
§1.10(vi) Multivalued Functions
(Or more generally, a simple contour that starts at the center and terminates on the boundary.) …
§1.10(vii) Inverse Functions
§1.10(xi) Generating Functions
18: 8.17 Incomplete Beta Functions
§8.17 Incomplete Beta Functions
§8.17(ii) Hypergeometric Representations
§8.17(iii) Integral Representation
§8.17(iv) Recurrence Relations
§8.17(vi) Sums
19: 25.11 Hurwitz Zeta Function
§25.11 Hurwitz Zeta Function
§25.11(i) Definition
The Riemann zeta function is a special case: …
§25.11(ii) Graphics
§25.11(vi) Derivatives
20: 25.1 Special Notation
(For other notation see Notation for the Special Functions.)
k , m , n nonnegative integers.
primes on function symbols: derivatives with respect to argument.
The main function treated in this chapter is the Riemann zeta function ζ ( s ) . … The main related functions are the Hurwitz zeta function ζ ( s , a ) , the dilogarithm Li 2 ( z ) , the polylogarithm Li s ( z ) (also known as Jonquière’s function ϕ ( z , s ) ), Lerch’s transcendent Φ ( z , s , a ) , and the Dirichlet L -functions L ( s , χ ) .