About the Project

table of

AdvancedHelp

(0.002 seconds)

31—40 of 177 matching pages

31: 3.5 Quadrature
Table 3.5.2: Nodes and weights for the 10-point Gauss–Legendre formula.
± x k w k
Table 3.5.3: Nodes and weights for the 20-point Gauss–Legendre formula.
± x k w k
Table 3.5.4: Nodes and weights for the 40-point Gauss–Legendre formula.
± x k w k
Table 3.5.6: Nodes and weights for the 5-point Gauss–Laguerre formula.
x k w k
Table 3.5.18: Nodes and weights for the 5-point complex Gauss quadrature formula with s = 1 .
ζ k w k
32: 9 Airy and Related Functions
33: 26.6 Other Lattice Path Numbers
See Table 26.6.1.
Table 26.6.1: Delannoy numbers D ( m , n ) .
m n
See Table 26.6.2. … See Table 26.6.3. … See Table 26.6.4. …
34: 18.3 Definitions
Table 18.3.1 provides the traditional definitions of Jacobi, Laguerre, and Hermite polynomials via orthogonality and standardization (§§18.2(i) and 18.2(iii)). This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre.
Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
For representations of the polynomials in Table 18.3.1 by Rodrigues formulas, see §18.5(ii). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
35: 20.15 Tables
§20.15 Tables
Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). For other tables prior to 1961 see Fletcher et al. (1962, pp. 508–514) and Lebedev and Fedorova (1960, pp. 227–230).
36: 7.13 Zeros
Table 7.13.1 gives 10D values of the first five x n and y n . …
Table 7.13.1: Zeros x n + i y n of erf z .
n x n y n
Table 7.13.2: Zeros x n + i y n of erfc z .
n x n y n
Table 7.13.3: Complex zeros x n + i y n of C ( z ) .
n x n y n
Table 7.13.4: Complex zeros x n + i y n of S ( z ) .
n x n y n
37: 19.37 Tables
§19.37 Tables
Only tables published since 1960 are included. For earlier tables see Fletcher (1948), Lebedev and Fedorova (1960), and Fletcher et al. (1962). …
§19.37(iv) Symmetric Integrals
38: 24.2 Definitions and Generating Functions
§24.2(iv) Tables
Table 24.2.1: Bernoulli and Euler numbers.
n B n E n
Table 24.2.2: Bernoulli and Euler polynomials.
n B n ( x ) E n ( x )
39: 26.5 Lattice Paths: Catalan Numbers
See Table 26.5.1.
Table 26.5.1: Catalan numbers.
n C ( n ) n C ( n ) n C ( n )
40: 36.7 Zeros
The zeros in Table 36.7.1 are points in the 𝐱 = ( x , y ) plane, where ph Ψ 2 ( 𝐱 ) is undetermined. …
Table 36.7.1: Zeros of cusp diffraction catastrophe to 5D.
Zeros { x y } inside, and zeros [ x y ] outside, the cusp x 2 = 8 27 | y | 3 .