About the Project

stokes������������ ���������������stokesads.cc������stokes���������������stokes���������������������������stokes������������stokes���������������stokes���������������������������������������������stokesads.cc���stokes������������������stokes���������

AdvancedHelp

The term"���������������stokesads.cc������stokes���������������stokes���������������������������stokes������������stokes���������������stokes���������������������������������������������stokesads.cc���stokes������������������stokes���������" was not found.Possible alternative term: "stokes".

(0.002 seconds)

1—10 of 19 matching pages

1: 36.5 Stokes Sets
§36.5 Stokes Sets
§36.5(i) Definitions
§36.5(ii) Cuspoids
Elliptic Umbilic Stokes Set (Codimension three)
§36.5(iv) Visualizations
2: 7.20 Mathematical Applications
For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
3: 8.22 Mathematical Applications
8.22.1 F p ( z ) = Γ ( p ) 2 π z 1 p E p ( z ) = Γ ( p ) 2 π Γ ( 1 p , z ) ,
plays a fundamental role in re-expansions of remainder terms in asymptotic expansions, including exponentially-improved expansions and a smooth interpretation of the Stokes phenomenon. …
4: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
For exponentially-improved asymptotic expansions in the same circumstances, together with smooth interpretations of the corresponding Stokes phenomenon (§§2.11(iii)2.11(v)) see Wong and Zhao (1999b) when ρ > 0 , and Wong and Zhao (1999a) when 1 < ρ < 0 . … This reference includes exponentially-improved asymptotic expansions for E a , b ( z ) when | z | , together with a smooth interpretation of Stokes phenomena. …
5: 2.11 Remainder Terms; Stokes Phenomenon
§2.11 Remainder Terms; Stokes Phenomenon
§2.11(iv) Stokes Phenomenon
That the change in their forms is discontinuous, even though the function being approximated is analytic, is an example of the Stokes phenomenon. Where should the change-over take place? Can it be accomplished smoothly? … For higher-order Stokes phenomena see Olde Daalhuis (2004b) and Howls et al. (2004). …
6: Bibliography P
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. B. Paris (1992b) Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. J. Comput. Appl. Math. 41 (1-2), pp. 117–133.
  • R. B. Paris (2005b) The Stokes phenomenon associated with the Hurwitz zeta function ζ ( s , a ) . Proc. Roy. Soc. London Ser. A 461, pp. 297–304.
  • 7: Bibliography W
  • R. Wong and Y.-Q. Zhao (1999a) Smoothing of Stokes’s discontinuity for the generalized Bessel function. II. Proc. Roy. Soc. London Ser. A 455, pp. 3065–3084.
  • R. Wong and Y.-Q. Zhao (1999b) Smoothing of Stokes’s discontinuity for the generalized Bessel function. Proc. Roy. Soc. London Ser. A 455, pp. 1381–1400.
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 8: Bibliography I
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • 9: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1995b) On the calculation of Stokes multipliers for linear differential equations of the second order. Methods Appl. Anal. 2 (3), pp. 348–367.
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • 10: 7.12 Asymptotic Expansions
    For these and other error bounds see Olver (1997b, pp. 109–112), with α = 1 2 and z replaced by z 2 ; compare (7.11.2). For re-expansions of the remainder terms leading to larger sectors of validity, exponential improvement, and a smooth interpretation of the Stokes phenomenon, see §§2.11(ii)2.11(iv) and use (7.11.3). …