About the Project

spherical polar coordinates

AdvancedHelp

(0.001 seconds)

11—20 of 114 matching pages

11: 10.50 Wronskians and Cross-Products
§10.50 Wronskians and Cross-Products
β–Ί
𝒲 ⁑ { 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) } = 2 ⁒ i ⁒ z 2 .
β–Ί
𝒲 ⁑ { 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) } = ( 1 ) n + 1 ⁒ z 2 ,
β–Ί
𝒲 ⁑ { 𝗂 n ( 1 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) } = 𝒲 ⁑ { 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) } = 1 2 ⁒ Ο€ ⁒ z 2 .
β–ΊResults corresponding to (10.50.3) and (10.50.4) for 𝗂 n ( 1 ) ⁑ ( z ) and 𝗂 n ( 2 ) ⁑ ( z ) are obtainable via (10.47.12).
12: 10.47 Definitions and Basic Properties
β–Ίβ–Ί
Equation (10.47.1)
β–Ί
Equation (10.47.2)
β–Ίβ–Ί
§10.47(iv) Interrelations
13: 10.49 Explicit Formulas
β–Ί
§10.49(i) Unmodified Functions
β–Ί
§10.49(ii) Modified Functions
β–Ί
§10.49(iii) Rayleigh’s Formulas
β–Ί
§10.49(iv) Sums or Differences of Squares
β–Ί
( 𝗂 0 ( 1 ) ⁑ ( z ) ) 2 ( 𝗂 0 ( 2 ) ⁑ ( z ) ) 2 = z 2 ,
14: 10.53 Power Series
§10.53 Power Series
β–Ί
10.53.3 𝗂 n ( 1 ) ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.4 𝗂 n ( 2 ) ⁑ ( z ) = ( 1 ) n z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
β–ΊFor 𝗁 n ( 1 ) ⁑ ( z ) and 𝗁 n ( 2 ) ⁑ ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ⁑ ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
15: 10.56 Generating Functions
§10.56 Generating Functions
β–Ί
10.56.1 cos ⁑ z 2 2 ⁒ z ⁒ t z = cos ⁑ z z + n = 1 t n n ! ⁒ 𝗃 n 1 ⁑ ( z ) ,
β–Ί
10.56.2 sin ⁑ z 2 2 ⁒ z ⁒ t z = sin ⁑ z z + n = 1 t n n ! ⁒ 𝗒 n 1 ⁑ ( z ) .
β–Ί
10.56.3 cosh ⁑ z 2 + 2 ⁒ i ⁒ z ⁒ t z = cosh ⁑ z z + n = 1 ( i ⁒ t ) n n ! ⁒ 𝗂 n 1 ( 1 ) ⁑ ( z ) ,
β–Ί
10.56.4 sinh ⁑ z 2 + 2 ⁒ i ⁒ z ⁒ t z = sinh ⁑ z z + n = 1 ( i ⁒ t ) n n ! ⁒ 𝗂 n 1 ( 2 ) ⁑ ( z ) ,
16: 10.60 Sums
§10.60 Sums
β–Ί
§10.60(i) Addition Theorems
β–Ί
§10.60(ii) Duplication Formulas
β–ΊFor further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000). β–Ί
§10.60(iv) Compendia
17: 10.51 Recurrence Relations and Derivatives
β–ΊLet f n ⁑ ( z ) denote any of 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , or 𝗁 n ( 2 ) ⁑ ( z ) . … β–Ί
n ⁒ f n 1 ⁑ ( z ) ( n + 1 ) ⁒ f n + 1 ⁑ ( z ) = ( 2 ⁒ n + 1 ) ⁒ f n ⁑ ( z ) , n = 1 , 2 , ,
β–Ί
f n ⁑ ( z ) = f n + 1 ⁑ ( z ) + ( n / z ) ⁒ f n ⁑ ( z ) , n = 0 , 1 , .
β–ΊLet g n ⁑ ( z ) denote 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , or ( 1 ) n 𝗄 n ⁑ ( z ) . Then …
18: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
β–ΊAsymptotic expansions for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗒 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗂 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , and 𝗄 n ⁑ ( ( n + 1 2 ) ⁒ z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) the connection formula (10.47.11) is available. β–ΊFor the corresponding expansion for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) use β–Ί
10.57.1 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) = Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 1 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) Ο€ 1 2 ( ( 2 ⁒ n + 1 ) ⁒ z ) 3 2 ⁒ J n + 1 2 ⁑ ( ( n + 1 2 ) ⁒ z ) .
19: 10.58 Zeros
§10.58 Zeros
β–ΊFor n 0 the m th positive zeros of 𝗃 n ⁑ ( x ) , 𝗃 n ⁑ ( x ) , 𝗒 n ⁑ ( x ) , and 𝗒 n ⁑ ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ⁑ ( x ) . … β–Ί
𝗃 n ⁑ ( a n , m ) = Ο€ 2 ⁒ j n + 1 2 , m ⁒ J n + 1 2 ⁑ ( j n + 1 2 , m ) ,
β–Ί
𝗒 n ⁑ ( b n , m ) = Ο€ 2 ⁒ y n + 1 2 , m ⁒ Y n + 1 2 ⁑ ( y n + 1 2 , m ) .
20: 10.1 Special Notation
β–ΊThe main functions treated in this chapter are the Bessel functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) ; Hankel functions H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) ; modified Bessel functions I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) ; spherical Bessel functions 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) ; Kelvin functions ber Ξ½ ⁑ ( x ) , bei Ξ½ ⁑ ( x ) , ker Ξ½ ⁑ ( x ) , kei Ξ½ ⁑ ( x ) . For the spherical Bessel functions and modified spherical Bessel functions the order n is a nonnegative integer. … β–ΊAbramowitz and Stegun (1964): j n ⁑ ( z ) , y n ⁑ ( z ) , h n ( 1 ) ⁑ ( z ) , h n ( 2 ) ⁑ ( z ) , for 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) , respectively, when n 0 . … β–ΊFor older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).