About the Project

spherical%20polar%20coordinates

AdvancedHelp

(0.002 seconds)

11—20 of 195 matching pages

11: 10.47 Definitions and Basic Properties
Equation (10.47.1)
Equation (10.47.2)
§10.47(iv) Interrelations
12: 10.49 Explicit Formulas
§10.49(i) Unmodified Functions
§10.49(ii) Modified Functions
§10.49(iii) Rayleigh’s Formulas
§10.49(iv) Sums or Differences of Squares
( 𝗂 0 ( 1 ) ( z ) ) 2 ( 𝗂 0 ( 2 ) ( z ) ) 2 = z 2 ,
13: 10.53 Power Series
§10.53 Power Series
10.53.3 𝗂 n ( 1 ) ( z ) = z n k = 0 ( 1 2 z 2 ) k k ! ( 2 n + 2 k + 1 ) !! ,
10.53.4 𝗂 n ( 2 ) ( z ) = ( 1 ) n z n + 1 k = 0 n ( 2 n 2 k 1 ) !! ( 1 2 z 2 ) k k ! + 1 z n + 1 k = n + 1 ( 1 2 z 2 ) k k ! ( 2 k 2 n 1 ) !! .
For 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) combine (10.47.10), (10.53.1), and (10.53.2). For 𝗄 n ( z ) combine (10.47.11), (10.53.3), and (10.53.4).
14: 10.56 Generating Functions
§10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
15: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
§10.60(iv) Compendia
16: 22.18 Mathematical Applications
In polar coordinates, x = r cos ϕ , y = r sin ϕ , the lemniscate is given by r 2 = cos ( 2 ϕ ) , 0 ϕ 2 π . … Discussion of parametrization of the angles of spherical trigonometry in terms of Jacobian elliptic functions is given in Greenhill (1959, p. 131) and Lawden (1989, §4.4). …
17: 10.51 Recurrence Relations and Derivatives
Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
n f n 1 ( z ) ( n + 1 ) f n + 1 ( z ) = ( 2 n + 1 ) f n ( z ) , n = 1 , 2 , ,
f n ( z ) = f n + 1 ( z ) + ( n / z ) f n ( z ) , n = 0 , 1 , .
Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …
18: 29.18 Mathematical Applications
§29.18(i) Sphero-Conal Coordinates
(29.18.5) is the differential equation of spherical Bessel functions (§10.47(i)), and (29.18.6), (29.18.7) agree with the Lamé equation (29.2.1).
§29.18(ii) Ellipsoidal Coordinates
The wave equation (29.18.1), when transformed to ellipsoidal coordinates α , β , γ : …
§29.18(iii) Spherical and Ellipsoidal Harmonics
19: 10.57 Uniform Asymptotic Expansions for Large Order
§10.57 Uniform Asymptotic Expansions for Large Order
Asymptotic expansions for 𝗃 n ( ( n + 1 2 ) z ) , 𝗒 n ( ( n + 1 2 ) z ) , 𝗁 n ( 1 ) ( ( n + 1 2 ) z ) , 𝗁 n ( 2 ) ( ( n + 1 2 ) z ) , 𝗂 n ( 1 ) ( ( n + 1 2 ) z ) , and 𝗄 n ( ( n + 1 2 ) z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). Subsequently, for 𝗂 n ( 2 ) ( ( n + 1 2 ) z ) the connection formula (10.47.11) is available. For the corresponding expansion for 𝗃 n ( ( n + 1 2 ) z ) use
10.57.1 𝗃 n ( ( n + 1 2 ) z ) = π 1 2 ( ( 2 n + 1 ) z ) 1 2 J n + 1 2 ( ( n + 1 2 ) z ) π 1 2 ( ( 2 n + 1 ) z ) 3 2 J n + 1 2 ( ( n + 1 2 ) z ) .
20: 10.58 Zeros
§10.58 Zeros
For n 0 the m th positive zeros of 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , and 𝗒 n ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ( x ) . …
𝗃 n ( a n , m ) = π 2 j n + 1 2 , m J n + 1 2 ( j n + 1 2 , m ) ,
𝗒 n ( b n , m ) = π 2 y n + 1 2 , m Y n + 1 2 ( y n + 1 2 , m ) .