About the Project

solutions%20analytic%20at%20two%20singularities

AdvancedHelp

(0.003 seconds)

21—30 of 616 matching pages

21: 36.5 Stokes Sets
In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. … For z < 0 , there are two solutions u , provided that | Y | > ( 2 5 ) 1 / 2 . … The first sheet corresponds to x < 0 and is generated as a solution of Equations (36.5.6)–(36.5.9). …For | Y | > Y 1 the second sheet is generated by a second solution of (36.5.6)–(36.5.9), and for | Y | < Y 1 it is generated by the roots of the polynomial equation … This part of the Stokes set connects two complex saddles. …
22: Bibliography C
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000) Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62 (063610), pp. 1–10.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 23: 32.8 Rational Solutions
    §32.8 Rational Solutions
    Special rational solutions of P III  are … These solutions have the form … These rational solutions have the form …
    24: Wolter Groenevelt
     1976 in Leidschendam, the Netherlands) is an Associate Professor at the Delft University of Technology in Delft, The Netherlands. …  in mathematics at the Delft University of Technology in 2004. … As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    25: Bibliography W
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • H. Watanabe (1995) Solutions of the fifth Painlevé equation. I. Hokkaido Math. J. 24 (2), pp. 231–267.
  • R. Wong and H. Y. Zhang (2007) Asymptotic solutions of a fourth order differential equation. Stud. Appl. Math. 118 (2), pp. 133–152.
  • 26: 31.18 Methods of Computation
    §31.18 Methods of Computation
    Independent solutions of (31.2.1) can be computed in the neighborhoods of singularities from their Fuchs–Frobenius expansions (§31.3), and elsewhere by numerical integration of (31.2.1). Subsequently, the coefficients in the necessary connection formulas can be calculated numerically by matching the values of solutions and their derivatives at suitably chosen values of z ; see Laĭ (1994) and Lay et al. (1998). Care needs to be taken to choose integration paths in such a way that the wanted solution is growing in magnitude along the path at least as rapidly as all other solutions3.7(ii)). …
    27: Gergő Nemes
     1988 in Szeged, Hungary) is a Research Fellow at the Alfréd Rényi Institute of Mathematics in Budapest, Hungary. … As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    28: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    §31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
    29: 25.12 Polylogarithms
    §25.12(i) Dilogarithms
    In the complex plane Li 2 ( z ) has a branch point at z = 1 . …
    §25.12(ii) Polylogarithms
    For each fixed complex s the series defines an analytic function of z for | z | < 1 . …For other values of z , Li s ( z ) is defined by analytic continuation. …
    30: 10.72 Mathematical Applications
    §10.72(i) Differential Equations with Turning Points
    Bessel functions and modified Bessel functions are often used as approximants in the construction of uniform asymptotic approximations and expansions for solutions of linear second-order differential equations containing a parameter. … In regions in which (10.72.1) has a simple turning point z 0 , that is, f ( z ) and g ( z ) are analytic (or with weaker conditions if z = x is a real variable) and z 0 is a simple zero of f ( z ) , asymptotic expansions of the solutions w for large u can be constructed in terms of Airy functions or equivalently Bessel functions or modified Bessel functions of order 1 3 9.6(i)). … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . …