About the Project

secant%20method

AdvancedHelp

(0.002 seconds)

11—20 of 264 matching pages

11: 4.15 Graphics
See accompanying text
Figure 4.15.5: csc x and sec x . Magnify
See accompanying text
Figure 4.15.6: arccsc x and arcsec x . … Magnify
The corresponding surfaces for cos ( x + i y ) , cot ( x + i y ) , and sec ( x + i y ) are similar. … The corresponding surfaces for arccos ( x + i y ) , arccot ( x + i y ) , arcsec ( x + i y ) can be visualized from Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equations (4.23.16)–(4.23.18).
12: 34.9 Graphical Method
§34.9 Graphical Method
The graphical method establishes a one-to-one correspondence between an analytic expression and a diagram by assigning a graphical symbol to each function and operation of the analytic expression. …For an account of this method see Brink and Satchler (1993, Chapter VII). For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
13: 4.45 Methods of Computation
§4.45 Methods of Computation
Another method, when x is large, is to sum … For arccsch , arcsech , and arccoth we have (4.37.7)–(4.37.9).
Other Methods
For other methods see Miel (1981). …
14: 20 Theta Functions
Chapter 20 Theta Functions
15: 5.11 Asymptotic Expansions
Wrench (1968) gives exact values of g k up to g 20 . … If z is complex, then the remainder terms are bounded in magnitude by sec 2 n ( 1 2 ph z ) for (5.11.1), and sec 2 n + 1 ( 1 2 ph z ) for (5.11.2), times the first neglected terms. …
5.11.11 | R K ( z ) | ( 1 + ζ ( K ) ) Γ ( K ) 2 ( 2 π ) K + 1 | z | K ( 1 + min ( sec ( ph z ) , 2 K 1 2 ) ) , | ph z | 1 2 π ,
16: 4.20 Derivatives and Differential Equations
4.20.3 d d z tan z = sec 2 z ,
4.20.5 d d z sec z = sec z tan z ,
17: 4.34 Derivatives and Differential Equations
4.34.3 d d z tanh z = sech 2 z ,
4.34.5 d d z sech z = sech z tanh z ,
18: 4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
sech z 1 1 0
19: Bibliography I
  • L. Infeld and T. E. Hull (1951) The factorization method. Rev. Modern Phys. 23 (1), pp. 21–68.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and E. Koelink (2011) The J -matrix method. Adv. in Appl. Math. 46 (1-4), pp. 379–395.
  • A. R. Its, A. S. Fokas, and A. A. Kapaev (1994) On the asymptotic analysis of the Painlevé equations via the isomonodromy method. Nonlinearity 7 (5), pp. 1291–1325.
  • A. R. Its and V. Yu. Novokshënov (1986) The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
  • 20: Publications
  • A. Youssef (2007) Methods of Relevance Ranking and Hit-content Generation in Math Search, Proceedings of Mathematical Knowledge Management (MKM2007), RISC, Hagenberg, Austria, June 27–30, 2007. PDF
  • B. Saunders and Q. Wang (2010) Tensor Product B-Spline Mesh Generation for Accurate Surface Visualizations in the NIST Digital Library of Mathematical Functions, in Mathematical Methods for Curves and Surfaces, Proceedings of the 2008 International Conference on Mathematical Methods for Curves and Surfaces (MMCS 2008), Lecture Notes in Computer Science, Vol. 5862, (M. Dæhlen, M. Floater., T. Lyche, J. L. Merrien, K. Mørken, L. L. Schumaker, eds), Springer, Berlin, Heidelberg (2010) pp. 385–393. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF