About the Project

roots

AdvancedHelp

(0.000 seconds)

1—10 of 88 matching pages

1: 4.46 Tables
For 40D values of the first 500 roots of tan x = x , see Robinson (1972). (These roots are zeros of the Bessel function J 3 / 2 ( x ) ; see §10.21.) For 10S values of the first five complex roots of sin z = a z , cos z = a z , and cosh z = a z , for selected positive values of a , see Fettis (1976). …
2: 2.2 Transcendental Equations
Then for y > f ( a ) the equation f ( x ) = y has a unique root x = x ( y ) in ( a , ) , and
2.2.2 x ( y ) y , y .
2.2.3 t 2 ln t = y .
2.2.4 t = y 1 2 ( 1 + o ( 1 ) ) , y .
2.2.5 t 2 = y + ln t = y + 1 2 ln y + o ( 1 ) ,
3: 1.11 Zeros of Polynomials
Roots of f ( z ) = 0 are 2 + 4 3 + 2 3 , 2 + 4 3 ρ + 2 3 ρ 2 , 2 + 4 3 ρ 2 + 2 3 ρ . … The square roots are chosen so that …
§1.11(iv) Roots of Unity and of Other Constants
The roots of … The roots of …
4: 23.7 Quarter Periods
23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,
where k , k and the square roots are real and positive when the lattice is rectangular; otherwise they are determined by continuity from the rectangular case.
5: Tom H. Koornwinder
Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of Askey–Wilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
6: 23.21 Physical Applications
Ellipsoidal coordinates ( ξ , η , ζ ) may be defined as the three roots ρ of the equation
23.21.1 x 2 ρ e 1 + y 2 ρ e 2 + z 2 ρ e 3 = 1 ,
23.21.3 f ( ρ ) = 2 ( ( ρ e 1 ) ( ρ e 2 ) ( ρ e 3 ) ) 1 / 2 .
Another form is obtained by identifying e 1 , e 2 , e 3 as lattice roots23.3(i)), and setting …
7: 23.3 Differential Equations
§23.3(i) Invariants, Roots, and Discriminant
The lattice roots satisfy the cubic equation …
23.3.4 Δ = g 2 3 27 g 3 2 = 16 ( e 2 e 3 ) 2 ( e 3 e 1 ) 2 ( e 1 e 2 ) 2 .
23.3.5 e 1 + e 2 + e 3 = 0 ,
23.3.7 g 3 = 4 e 1 e 2 e 3 = 4 3 ( e 1 3 + e 2 3 + e 3 3 ) .
8: 19.38 Approximations
Approximations for Legendre’s complete or incomplete integrals of all three kinds, derived by Padé approximation of the square root in the integrand, are given in Luke (1968, 1970). …
9: 37.19 Other Orthogonal Polynomials of d Variables
Let R + be the set of positive roots and let 𝐯 κ 𝐯 be a nonnegative function defined on R + with the property that it takes constant value in each conjugacy class of roots. …
§37.19(vi) OPs Associated with Root Systems
Orthogonal polynomials associated with root systems are certain systems of trigonometric polynomials of several variables, symmetric under a certain finite group (Weyl group), and orthogonal on a torus. …For general q they occur as Macdonald polynomials for root system A n , as Macdonald polynomials for general root systems, and as Macdonald–Koornwinder polynomials; see Macdonald (1995, Chapter VI), Macdonald (2000, 2003), Koornwinder (1992). See §37.8 and §37.9 for Jacobi polynomials associated with root systems B C 2 and A 2 , respectively.
10: 2.9 Difference Equations
2.9.4 ρ j n n α j s = 0 a s , j n s , j = 1 , 2 ,
where ρ 1 , ρ 2 are the roots of the characteristic equationWhen the roots of (2.9.5) are equal we denote them both by ρ . Assume first 2 g 1 f 0 f 1 . … Then the indices α 1 , α 2 are the roots of …