About the Project

relations to Jacobian elliptic functions

AdvancedHelp

(0.019 seconds)

21—28 of 28 matching pages

21: Bibliography C
  • B. C. Carlson (2004) Symmetry in c, d, n of Jacobian elliptic functions. J. Math. Anal. Appl. 299 (1), pp. 242–253.
  • B. C. Carlson (2005) Jacobian elliptic functions as inverses of an integral. J. Comput. Appl. Math. 174 (2), pp. 355–359.
  • B. C. Carlson (2006a) Some reformulated properties of Jacobian elliptic functions. J. Math. Anal. Appl. 323 (1), pp. 522–529.
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • 22: 29.14 Orthogonality
    First, the orthogonality relations (29.3.19) apply; see §29.12(i). Secondly, the system of functions …is orthogonal and complete with respect to the inner product …where … Each of the following seven systems is orthogonal and complete with respect to the inner product (29.14.2): …
    23: 20.1 Special Notation
    (For other notation see Notation for the Special Functions.) … The main functions treated in this chapter are the theta functions θ j ( z | τ ) = θ j ( z , q ) where j = 1 , 2 , 3 , 4 and q = e i π τ . …Sometimes the theta functions are called the Jacobian or classical theta functions to distinguish them from generalizations; compare Chapter 21. Primes on the θ symbols indicate derivatives with respect to the argument of the θ function. … This notation simplifies the relationship of the theta functions to Jacobian elliptic functions22.2); see Neville (1951). …
    24: Bibliography B
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • 25: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • 26: 29.12 Definitions
    §29.12(i) Elliptic-Function Form
    There are eight types of Lamé polynomials, defined as follows: …These functions are polynomials in sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) . … The superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ) , while n m is the number of z -zeros in the open line segment from K to K + i K . … In the fourth column the variable z and modulus k of the Jacobian elliptic functions have been suppressed, and P ( sn 2 ) denotes a polynomial of degree n in sn 2 ( z , k ) (different for each type). …
    27: Bibliography N
  • National Bureau of Standards (1967) Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors. 2nd edition, National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. H. Neville (1951) Jacobian Elliptic Functions. 2nd edition, Clarendon Press, Oxford.
  • 28: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.