About the Project

recurrence%20relations

AdvancedHelp

(0.002 seconds)

11—19 of 19 matching pages

11: Bibliography G
  • W. Gautschi (1967) Computational aspects of three-term recurrence relations. SIAM Rev. 9 (1), pp. 24–82.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • E. T. Goodwin (1949a) Recurrence relations for cross-products of Bessel functions. Quart. J. Mech. Appl. Math. 2 (1), pp. 72–74.
  • 12: 25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case: …
    25.11.3 ζ ( s , a ) = ζ ( s , a + 1 ) + a s ,
    25.11.4 ζ ( s , a ) = ζ ( s , a + m ) + n = 0 m 1 1 ( n + a ) s , m = 1 , 2 , 3 , .
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    13: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • M. Micu (1968) Recursion relations for the 3 - j symbols. Nuclear Physics A 113 (1), pp. 215–220.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: 26.13 Permutations: Cycle Notation
    They are related to Stirling numbers of the first kind by …See §26.8 for generating functions, recurrence relations, identities, and asymptotic approximations. …
    15: 26.10 Integer Partitions: Other Restrictions
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    p ( 𝒟 , n ) p ( 𝒟 2 , n ) p ( 𝒟 2 , T , n ) p ( 𝒟 3 , n )
    20 64 31 20 18
    §26.10(iii) Recurrence Relations
    16: 9.7 Asymptotic Expansions
    Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D.
    Table 9.7.1: χ ( n ) .
    n χ ( n ) n χ ( n ) n χ ( n ) n χ ( n )
    5 2.95 10 4.06 15 4.94 20 5.68
    17: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    Motzkin Number M ( n )
    Narayana Number N ( n , k )
    Schröder Number r ( n )
    §26.6(iii) Recurrence Relations
    18: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    8 0 1 5 10 15 18 20 21 22 22 22
    It follows that p k ( n ) also equals the number of partitions of n into parts that are less than or equal to k . …
    §26.9(iii) Recurrence Relations
    19: Bibliography C
  • L. Carlitz (1961a) A recurrence formula for ζ ( 2 n ) . Proc. Amer. Math. Soc. 12 (6), pp. 991–992.
  • J. R. Cash and R. V. M. Zahar (1994) A Unified Approach to Recurrence Algorithms. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Computational Mathematics, Vol. 119, pp. 97–120.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.