About the Project

rational solutions

AdvancedHelp

(0.001 seconds)

21—28 of 28 matching pages

21: Bibliography T
  • C. A. Tracy and H. Widom (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Phys. A 244 (1-4), pp. 402–413.
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • S. A. Tumarkin (1959) Asymptotic solution of a linear nonhomogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades. J. Appl. Math. Mech. 23, pp. 1549–1565.
  • 22: 23.20 Mathematical Applications
    If a , b , then by rescaling we may assume a , b . Let T denote the set of points on C that are of finite order (that is, those points P for which there exists a positive integer n with n P = o ), and let I , K be the sets of points with integer and rational coordinates, respectively. …Values of x are then found as integer solutions of x 3 + a x + b y 2 = 0 (in particular x must be a divisor of b y 2 ). … For further information, including the application of (23.20.7) to the solution of the general quintic equation, see Borwein and Borwein (1987, Chapter 4). …
    23: Bibliography H
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • C. J. Hill (1828) Über die Integration logarithmisch-rationaler Differentiale. J. Reine Angew. Math. 3, pp. 101–159.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 24: Mathematical Introduction
    These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). …
    ( a , b ] or [ a , b ) half-closed intervals.
    set of all rational numbers.
    25: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • L. Lapointe and L. Vinet (1996) Exact operator solution of the Calogero-Sutherland model. Comm. Math. Phys. 178 (2), pp. 425–452.
  • Y. A. Li and P. J. Olver (2000) Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differential Equations 162 (1), pp. 27–63.
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • 26: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • G. M. Roper (1951) Some Applications of the Lamé Function Solutions of the Linearised Supersonic Flow Equations. Technical Reports and Memoranda Technical Report 2865, Aeronautical Research Council (Great Britain).
  • 27: Bibliography J
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • J. H. Johnson and J. M. Blair (1973) REMES2 — a Fortran program to calculate rational minimax approximations to a given function. Technical Report Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario.
  • N. Joshi and A. V. Kitaev (2001) On Boutroux’s tritronquée solutions of the first Painlevé equation. Stud. Appl. Math. 107 (3), pp. 253–291.
  • N. Joshi and A. V. Kitaev (2005) The Dirichlet boundary value problem for real solutions of the first Painlevé equation on segments in non-positive semi-axis. J. Reine Angew. Math. 583, pp. 29–86.
  • 28: Bibliography W
  • E. J. Weniger and J. Čížek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • E. J. Weniger (2003) A rational approximant for the digamma function. Numer. Algorithms 33 (1-4), pp. 499–507.
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q ” identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • C. A. Wills, J. M. Blair, and P. L. Ragde (1982) Rational Chebyshev approximations for the Bessel functions J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) . Math. Comp. 39 (160), pp. 617–623.