About the Project

radial

AdvancedHelp

(0.001 seconds)

31—40 of 42 matching pages

31: 28.33 Physical Applications
We shall derive solutions to the uniform, homogeneous, loss-free, and stretched elliptical ring membrane with mass ρ per unit area, and radial tension τ per unit arc length. …
32: 28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
33: 18.39 Applications in the Physical Sciences
a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
c) Spherical Radial Coulomb Wave Functions
The radial Coulomb wave functions R n , l ( r ) , solutions of …
d) Radial Coulomb Wave Functions Expressed in Terms of the Associated Coulomb–Laguerre OP’s
The radial operator (18.39.28) …
34: Bibliography B
  • T. A. Beu and R. I. Câmpeanu (1983b) Prolate radial spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 177–185.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • 35: Bibliography H
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m = 0 , 1 , 2 ; Vols. 4-6, Oblate, m = 0 , 1 , 2 . Technical report Naval Research Laboratory, Washington, D.C..
  • 36: Bibliography S
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • 37: Bibliography G
  • P. M. W. Gill and S. Chen (2003) Radial quadrature for multi exponential integrands. J. Comput. Chem. 24 (4), pp. 732–740.
  • 38: Bibliography K
  • B. J. King, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 7012 Naval Res. Lab.  Washingtion, D.C..
  • 39: Bibliography L
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • 40: 33.22 Particle Scattering and Atomic and Molecular Spectra
    The reduced mass is m = m 1 m 2 / ( m 1 + m 2 ) , and at energy of relative motion E with relative orbital angular momentum , the Schrödinger equation for the radial wave function w ( s ) is given by …