About the Project

q-multinomial%20coefficient

AdvancedHelp

(0.002 seconds)

21—30 of 293 matching pages

21: 12.10 Uniform Asymptotic Expansions for Large Parameter
β–ΊThe coefficients are given by … β–Ίand the coefficients Ξ³ s are defined by … β–Ίand the coefficients π’œ ~ s ⁑ ( t ) and ℬ ~ s ⁑ ( t ) are given by … β–ΊThe coefficients A s ⁑ ( ΞΆ ) and B s ⁑ ( ΞΆ ) are given by …The coefficients C s ⁑ ( ΞΆ ) and D s ⁑ ( ΞΆ ) in (12.10.36) and (12.10.38) are given by …
22: 3.8 Nonlinear Equations
β–ΊHowever, when the coefficients are all real, complex arithmetic can be avoided by the following iterative process. … β–ΊThus if f is the polynomial (3.8.8) and Ξ± is the coefficient a j , say, then … β–Ί
3.8.15 p ⁑ ( x ) = ( x 1 ) ⁒ ( x 2 ) ⁒ β‹― ⁒ ( x 20 )
β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . …
23: 36 Integrals with Coalescing Saddles
24: GergΕ‘ Nemes
β–ΊAs of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
25: Wolter Groenevelt
β–ΊAs of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
26: 25.6 Integer Arguments
β–Ί
25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
β–Ί
25.6.8 ΢ ⁑ ( 2 ) = 3 ⁒ k = 1 1 k 2 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.9 ΢ ⁑ ( 3 ) = 5 2 ⁒ k = 1 ( 1 ) k 1 k 3 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.10 ΢ ⁑ ( 4 ) = 36 17 ⁒ k = 1 1 k 4 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.13 ( 1 ) k ⁒ ΞΆ ( k ) ⁑ ( 2 ⁒ n ) = 2 ⁒ ( 1 ) n ( 2 ⁒ Ο€ ) 2 ⁒ n + 1 ⁒ m = 0 k r = 0 m ( k m ) ⁒ ( m r ) ⁒ ⁑ ( c k m ) ⁒ Ξ“ ( r ) ⁑ ( 2 ⁒ n + 1 ) ⁒ ΞΆ ( m r ) ⁑ ( 2 ⁒ n + 1 ) ,
27: 26.14 Permutations: Order Notation
β–Ί
26.14.5 k = 0 n 1 ⟨ n k ⟩ ⁒ ( x + k n ) = x n .
β–Ί
26.14.6 ⟨ n k ⟩ = j = 0 k ( 1 ) j ⁒ ( n + 1 j ) ⁒ ( k + 1 j ) n , n 1 ,
β–Ί
26.14.7 ⟨ n k ⟩ = j = 0 n k ( 1 ) n k j ⁒ j ! ⁒ ( n j k ) ⁒ S ⁑ ( n , j ) ,
β–Ί
26.14.12 S ⁑ ( n , m ) = 1 m ! ⁒ k = 0 n 1 ⟨ n k ⟩ ⁒ ( k n m ) , n m , n 1 .
β–Ί
26.14.16 ⟨ n 2 ⟩ = 3 n ( n + 1 ) ⁒ 2 n + ( n + 1 2 ) , n 1 .
28: 33.24 Tables
β–Ί
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ⁑ ( Ξ· , ρ ) , G 0 ⁑ ( Ξ· , ρ ) , F 0 ⁑ ( Ξ· , ρ ) , and G 0 ⁑ ( Ξ· , ρ ) for Ξ· = 0.5 ⁒ ( .5 ) ⁒ 20 and ρ = 1 ⁒ ( 1 ) ⁒ 20 , 5S; C 0 ⁑ ( Ξ· ) for Ξ· = 0 ⁒ ( .05 ) ⁒ 3 , 6S.

  • 29: 26.10 Integer Partitions: Other Restrictions
    β–Ί
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    β–Ί β–Ίβ–Ίβ–Ί
    p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
    20 64 31 20 18
    β–Ί
    β–Ί
    26.10.3 ( 1 x ) ⁒ m , n = 0 p m ⁑ ( k , π’Ÿ , n ) ⁒ x m ⁒ q n = m = 0 k [ k m ] q ⁒ q m ⁒ ( m + 1 ) / 2 ⁒ x m = j = 1 k ( 1 + x ⁒ q j ) , | x | < 1 ,
    β–Ί
    26.10.17 p ⁑ ( π’Ÿ , n ) = Ο€ ⁒ k = 1 A 2 ⁒ k 1 ⁑ ( n ) ( 2 ⁒ k 1 ) ⁒ 24 ⁒ n + 1 ⁒ I 1 ⁑ ( Ο€ 2 ⁒ k 1 ⁒ 24 ⁒ n + 1 72 ) ,
    β–Ίwhere I 1 ⁑ ( x ) is the modified Bessel function (§10.25(ii)), and β–Ί
    26.10.18 A k ⁑ ( n ) = 1 < h k ( h , k ) = 1 e Ο€ ⁒ i ⁒ f ⁑ ( h , k ) ( 2 ⁒ Ο€ ⁒ i ⁒ n ⁒ h / k ) ,
    30: 24.2 Definitions and Generating Functions
    β–Ί
    24.2.5 B n ⁑ ( x ) = k = 0 n ( n k ) ⁒ B k ⁒ x n k .
    β–Ί
    24.2.10 E n ⁑ ( x ) = k = 0 n ( n k ) ⁒ E k 2 k ⁒ ( x 1 2 ) n k .
    β–Ί
    Table 24.2.4: Euler numbers E n .
    β–Ί β–Ίβ–Ίβ–Ί
    n E n
    20 37037 11882 37525
    β–Ί
    β–Ί
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ⁑ ( x ) = k = 0 n b n , k ⁒ x k .
    β–Ί β–Ίβ–Ί
    k
    β–Ί
    β–Ί
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ⁑ ( x ) = k = 0 n e n , k ⁒ x k .
    β–Ί β–Ίβ–Ί
    k
    β–Ί