About the Project

q-binomial%20theorem

AdvancedHelp

(0.005 seconds)

1—10 of 200 matching pages

1: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
q -Binomial Series
q -Binomial Theorem
2: 26.9 Integer Partitions: Restricted Number and Part Size
26.9.4 [ m n ] q = j = 1 n 1 q m n + j 1 q j , n 0 ,
is the Gaussian polynomial (or q -binomial coefficient); see also §§17.2(i)17.2(ii). …
26.9.5 n = 0 p k ( n ) q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q q m ,
3: 17.2 Calculus
§17.2(ii) Binomial Coefficients
17.2.27 [ n m ] q = ( q ; q ) n ( q ; q ) m ( q ; q ) n m = ( q n ; q ) m ( 1 ) m q n m ( m 2 ) ( q ; q ) m ,
§17.2(iii) Binomial Theorem
When a = q m + 1 , where m is a nonnegative integer, (17.2.37) reduces to the q -binomial series …
4: 26.10 Integer Partitions: Other Restrictions
Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
p ( 𝒟 , n ) p ( 𝒟 2 , n ) p ( 𝒟 2 , T , n ) p ( 𝒟 3 , n )
20 64 31 20 18
26.10.3 ( 1 x ) m , n = 0 p m ( k , 𝒟 , n ) x m q n = m = 0 k [ k m ] q q m ( m + 1 ) / 2 x m = j = 1 k ( 1 + x q j ) , | x | < 1 ,
5: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 6: 17.3 q -Elementary and q -Special Functions
    17.3.8 A m , s ( q ) = q ( s m 2 ) + ( s 2 ) j = 0 s ( 1 ) j q ( j 2 ) [ m + 1 j ] q ( 1 q s j ) m ( 1 q ) m .
    17.3.9 a m , s ( q ) = q ( s 2 ) ( 1 q ) s ( q ; q ) s j = 0 s ( 1 ) j q ( j 2 ) [ s j ] q ( 1 q s j ) m ( 1 q ) m .
    7: 26.16 Multiset Permutations
    26.16.1 [ a 1 + a 2 + + a n a 1 , a 2 , , a n ] q = k = 1 n 1 [ a k + a k + 1 + + a n a k ] q ,
    8: 18.27 q -Hahn Class
    18.27.4 y = 0 N Q n ( q y ) Q m ( q y ) [ N y ] q ( α q ; q ) y ( β q ; q ) N y ( α q ) y = h n δ n , m , n , m = 0 , 1 , , N ,
    18.27.4_1 h n = ( α q ) n N 1 α β q 2 n + 1 ( α β q n + 1 ; q ) N + 1 ( β q ; q ) n [ N n ] q ( α q ; q ) n .
    9: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    10: 28.27 Addition Theorems
    §28.27 Addition Theorems
    Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …