About the Project

q-Bernoulli%20polynomials

AdvancedHelp

(0.002 seconds)

21—30 of 316 matching pages

21: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • 22: 24.3 Graphs
    See accompanying text
    Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
    See accompanying text
    Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
    23: 18.4 Graphics
    See accompanying text
    Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . … Magnify
    See accompanying text
    Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    See accompanying text
    Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
    24: 18.7 Interrelations and Limit Relations
    §18.7 Interrelations and Limit Relations
    Chebyshev, Ultraspherical, and Jacobi
    Legendre, Ultraspherical, and Jacobi
    §18.7(ii) Quadratic Transformations
    §18.7(iii) Limit Relations
    25: 18.41 Tables
    §18.41(i) Polynomials
    For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
    26: 18.6 Symmetry, Special Values, and Limits to Monomials
    For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1.
    Laguerre
    Table 18.6.1: Classical OP’s: symmetry and special values.
    p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
    §18.6(ii) Limits to Monomials
    18.6.4 lim λ C n ( λ ) ( x ) C n ( λ ) ( 1 ) = x n ,
    27: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 28: 8 Incomplete Gamma and Related
    Functions
    29: 28 Mathieu Functions and Hill’s Equation
    30: 18.1 Notation
    Classical OP’s
    Hahn Class OP’s
    Wilson Class OP’s
    Nor do we consider the shifted Jacobi polynomials: …or the dilated Chebyshev polynomials of the first and second kinds: …