About the Project

orthogonal functions with respect to weighted summation

AdvancedHelp

(0.004 seconds)

5 matching pages

1: 3.11 Approximation Techniques
Now suppose that X k = 0 when k , that is, the functions ϕ k ( x ) are orthogonal with respect to weighted summation on the discrete set x 1 , x 2 , , x J . … …
2: 18.3 Definitions
§18.3 Definitions
For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : … For 1 β > α > 1 a finite system of Jacobi polynomials P n ( α , β ) ( x ) is orthogonal on ( 1 , ) with weight function w ( x ) = ( x 1 ) α ( x + 1 ) β . … However, in general they are not orthogonal with respect to a positive measure, but a finite system has such an orthogonality. …
3: 18.27 q -Hahn Class
§18.27 q -Hahn Class
Thus in addition to a relation of the form (18.27.2), such systems may also satisfy orthogonality relations with respect to a continuous weight function on some interval. …
§18.27(ii) q -Hahn Polynomials
§18.27(iii) Big q -Jacobi Polynomials
Discrete q -Hermite II
4: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • G. Gasper (1981) Orthogonality of certain functions with respect to complex valued weights. Canad. J. Math. 33 (5), pp. 1261–1270.
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 5: 18.20 Hahn Class: Explicit Representations
    §18.20(i) Rodrigues Formulas
    §18.20(ii) Hypergeometric Function and Generalized Hypergeometric Functions
    For the definition of hypergeometric and generalized hypergeometric functions see §16.2. Here we use as convention for (16.2.1) with b q = N , a 1 = n , and n = 0 , 1 , , N that the summation on the right-hand side ends at k = n . …(For symmetry properties of p n ( x ; a , b , a ¯ , b ¯ ) with respect to a , b , a ¯ , b ¯ see Andrews et al. (1999, Corollary 3.3.4).) …