About the Project

of zeros

AdvancedHelp

(0.001 seconds)

21—30 of 185 matching pages

21: 13.9 Zeros
§13.9 Zeros
§13.9(i) Zeros of M ( a , b , z )
22: 15.13 Zeros
§15.13 Zeros
Let N ( a , b , c ) denote the number of zeros of F ( a , b ; c ; z ) in the sector | ph ( 1 z ) | < π . If a , b , c are real, a , b , c , c a , c b 0 , 1 , 2 , , and, without loss of generality, b a , c a + b (compare (15.8.1)), then … For further information on the location of real zeros see Zarzo et al. (1995) and Dominici et al. (2013). A small table of zeros is given in Conde and Kalla (1981) and Segura (2008).
23: 12.11 Zeros
§12.11 Zeros
§12.11(i) Distribution of Real Zeros
§12.11(ii) Asymptotic Expansions of Large Zeros
§12.11(iii) Asymptotic Expansions for Large Parameter
For the first zero of U ( a , x ) we also have …
24: 3.8 Nonlinear Equations
§3.8(iv) Zeros of Polynomials
has n zeros in , counting each zero according to its multiplicity. …
§3.8(v) Zeros of Analytic Functions
§3.8(vi) Conditioning of Zeros
The zeros of …
25: 18.16 Zeros
§18.16 Zeros
§18.16(ii) Jacobi
Inequalities
§18.16(iii) Ultraspherical, Legendre and Chebyshev
§18.16(iv) Laguerre
26: 4.46 Tables
This handbook also includes lists of references for earlier tables, as do Fletcher et al. (1962) and Lebedev and Fedorova (1960). … (These roots are zeros of the Bessel function J 3 / 2 ( x ) ; see §10.21.) …
27: 29.20 Methods of Computation
A fourth method is by asymptotic approximations by zeros of orthogonal polynomials of increasing degree. …
§29.20(iii) Zeros
Zeros of Lamé polynomials can be computed by solving the system of equations (29.12.13) by employing Newton’s method; see §3.8(ii). Alternatively, the zeros can be found by locating the maximum of function g in (29.12.11).
28: 9.18 Tables
§9.18(iv) Zeros
  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • 29: 14.16 Zeros
    §14.16 Zeros
    §14.16(ii) Interval 1 < x < 1
    §14.16(iii) Interval 1 < x <
    P ν μ ( x ) has exactly one zero in the interval ( 1 , ) if either of the following sets of conditions holds: … 𝑸 ν μ ( x ) has no zeros in the interval ( 1 , ) when ν > 1 , and at most one zero in the interval ( 1 , ) when ν < 1 .
    30: Bibliography Q
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.