About the Project

of the second kind

AdvancedHelp

(0.006 seconds)

31—40 of 213 matching pages

31: 24.15 Related Sequences of Numbers
§24.15(iii) Stirling Numbers
The Stirling numbers of the first kind s ( n , m ) , and the second kind S ( n , m ) , are as defined in §26.8(i).
24.15.6 B n = k = 0 n ( 1 ) k k ! S ( n , k ) k + 1 ,
24.15.9 p B n n S ( p 1 + n , p 1 ) ( mod p 2 ) , 1 n p 2 ,
24.15.10 2 n 1 4 n p 2 B 2 n S ( p + 2 n , p 1 ) ( mod p 3 ) , 2 2 n p 3 .
32: 10.75 Tables
  • Achenbach (1986) tabulates I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , x = 0 ( .1 ) 8 , 19D or 19–21S.

  • Parnes (1972) tabulates all zeros of the principal value of K n ( z ) , for n = 2 ( 1 ) 10 , 9D.

  • Leung and Ghaderpanah (1979), tabulates all zeros of the principal value of K n ( z ) , for n = 2 ( 1 ) 10 , 29S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Žurina and Karmazina (1967) tabulates K ~ ν ( x ) for ν = 0.01 ( .01 ) 10 , x = 0.1 ( .1 ) 10.2 , 7S.

  • 33: 14.7 Integer Degree and Order
    14.7.7 Q n ( x ) = 1 2 P n ( x ) ln ( x + 1 x 1 ) W n 1 ( x ) , n = 0 , 1 , 2 , .
    14.7.22 n = 0 Q n ( x ) h n = 1 ( 1 2 x h + h 2 ) 1 / 2 ln ( x h + ( 1 2 x h + h 2 ) 1 / 2 ( x 2 1 ) 1 / 2 ) .
    34: 19.9 Inequalities
    1 E ( k ) π / 2 .
    Further inequalities for K ( k ) and E ( k ) can be found in Alzer and Qiu (2004), Anderson et al. (1992a, b, 1997), and Qiu and Vamanamurthy (1996). …
    19.9.9 L ( a , b ) = 4 a E ( k ) , k 2 = 1 ( b 2 / a 2 ) , a > b .
    Inequalities for both F ( ϕ , k ) and E ( ϕ , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). …
    35: 10.1 Special Notation
    The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . … Jeffreys and Jeffreys (1956): Hs ν ( z ) for H ν ( 1 ) ( z ) , Hi ν ( z ) for H ν ( 2 ) ( z ) , Kh ν ( z ) for ( 2 / π ) K ν ( z ) . Whittaker and Watson (1927): K ν ( z ) for cos ( ν π ) K ν ( z ) . For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
    36: 14.1 Special Notation
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). … Magnus et al. (1966) denotes 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) , P ν μ ( z ) , and Q ν μ ( z ) by P ν μ ( x ) , Q ν μ ( x ) , 𝔓 ν μ ( z ) , and 𝔔 ν μ ( z ) , respectively. Hobson (1931) denotes both 𝖯 ν μ ( x ) and P ν μ ( x ) by P ν μ ( x ) ; similarly for 𝖰 ν μ ( x ) and Q ν μ ( x ) .
    37: 10.40 Asymptotic Expansions for Large Argument
    Corresponding expansions for I ν ( z ) , K ν ( z ) , I ν ( z ) , and K ν ( z ) for other ranges of ph z are obtainable by combining (10.34.3), (10.34.4), (10.34.6), and their differentiated forms, with (10.40.2) and (10.40.4). …
    10.40.6 I ν ( z ) K ν ( z ) 1 2 z ( 1 1 2 μ 1 ( 2 z ) 2 + 1 3 2 4 ( μ 1 ) ( μ 9 ) ( 2 z ) 4 ) ,
    10.40.7 I ν ( z ) K ν ( z ) 1 2 z ( 1 + 1 2 μ 3 ( 2 z ) 2 1 2 4 ( μ 1 ) ( μ 45 ) ( 2 z ) 4 + ) ,
    38: 22.11 Fourier and Hyperbolic Series
    Next, with E = E ( k ) denoting the complete elliptic integral of the second kind19.2(ii)) and q exp ( 2 | ζ | ) < 1 ,
    22.11.13 sn 2 ( z , k ) = 1 k 2 ( 1 E K ) 2 π 2 k 2 K 2 n = 1 n q n 1 q 2 n cos ( 2 n ζ ) .
    where E = E ( k ) is defined by §19.2.9. …
    39: 19.11 Addition Theorems
    19.11.2 E ( θ , k ) + E ( ϕ , k ) = E ( ψ , k ) + k 2 sin θ sin ϕ sin ψ .
    19.11.13 E ( ψ , k ) = 2 E ( θ , k ) k 2 sin 2 θ sin ψ ,
    40: 12.7 Relations to Other Functions
    12.7.8 U ( 2 , z ) = z 5 / 2 4 2 π ( 2 K 1 4 ( 1 4 z 2 ) + 3 K 3 4 ( 1 4 z 2 ) K 5 4 ( 1 4 z 2 ) ) ,
    12.7.9 U ( 1 , z ) = z 3 / 2 2 2 π ( K 1 4 ( 1 4 z 2 ) + K 3 4 ( 1 4 z 2 ) ) ,
    12.7.10 U ( 0 , z ) = z 2 π K 1 4 ( 1 4 z 2 ) ,
    12.7.11 U ( 1 , z ) = z 3 / 2 2 π ( K 3 4 ( 1 4 z 2 ) K 1 4 ( 1 4 z 2 ) ) .