About the Project

of infinity

AdvancedHelp

(0.003 seconds)

21—30 of 488 matching pages

21: 28.14 Fourier Series
28.14.1 me ν ( z , q ) = m = c 2 m ν ( q ) e i ( ν + 2 m ) z ,
28.14.2 ce ν ( z , q ) = m = c 2 m ν ( q ) cos ( ν + 2 m ) z ,
28.14.3 se ν ( z , q ) = m = c 2 m ν ( q ) sin ( ν + 2 m ) z ,
28.14.5 m = ( c 2 m ν ( q ) ) 2 = 1 ;
28.14.6 c 2 m ν ( q ) c 2 m 2 ν ( q ) = q 4 m 2 ( 1 + O ( 1 m ) ) , m ± .
22: 33.21 Asymptotic Approximations for Large | r |
We indicate here how to obtain the limiting forms of f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r ) as r ± , with ϵ and fixed, in the following cases:
  • (a)

    When r ± with ϵ > 0 , Equations (33.16.4)–(33.16.7) are combined with (33.10.1).

  • (b)

    When r ± with ϵ < 0 , Equations (33.16.10)–(33.16.13) are combined with

    33.21.1
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r ,
    33.21.2
    ζ ( ν , r ) e r / ν ( 2 r / ν ) ν ,
    ξ ( ν , r ) e r / ν ( 2 r / ν ) ν , r .

    Corresponding approximations for s ( ϵ , ; r ) and c ( ϵ , ; r ) as r can be obtained via (33.16.17), and as r via (33.16.18).

  • (c)

    When r ± with ϵ = 0 , combine (33.20.1), (33.20.2) with §§10.7(ii), 10.30(ii).

  • For asymptotic expansions of f ( ϵ , ; r ) and h ( ϵ , ; r ) as r ± with ϵ and fixed, see Curtis (1964a, §6).
    23: 20.5 Infinite Products and Related Results
    20.5.9 θ 3 ( π z | τ ) = n = p 2 n q n 2 = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 p 2 ) ( 1 + q 2 n 1 p 2 ) ,
    20.5.10 θ 1 ( z , q ) θ 1 ( z , q ) cot z = 4 sin ( 2 z ) n = 1 q 2 n 1 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 q 2 n 1 q 2 n sin ( 2 n z ) ,
    20.5.11 θ 2 ( z , q ) θ 2 ( z , q ) + tan z = 4 sin ( 2 z ) n = 1 q 2 n 1 + 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 ( 1 ) n q 2 n 1 q 2 n sin ( 2 n z ) .
    20.5.12 θ 3 ( z , q ) θ 3 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 ( 1 ) n q n 1 q 2 n sin ( 2 n z ) ,
    20.5.13 θ 4 ( z , q ) θ 4 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 q n 1 q 2 n sin ( 2 n z ) .
    24: 25.8 Sums
    25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
    25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
    25.8.3 k = 0 ( s ) k ζ ( s + k ) k ! 2 s + k = ( 1 2 s ) ζ ( s ) , s 1 .
    25.8.5 k = 2 ζ ( k ) z k = γ z z ψ ( 1 z ) , | z | < 1 .
    25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
    25: 32.5 Integral Equations
    32.5.1 K ( z , ζ ) = k Ai ( z + ζ 2 ) + k 2 4 z z K ( z , s ) Ai ( s + t 2 ) Ai ( t + ζ 2 ) d s d t ,
    32.5.3 w ( z ) k Ai ( z ) , z + .
    26: 32.4 Isomonodromy Problems
    where θ is an arbitrary constant, is
    32.4.10 z u 0 = θ u 0 z v 0 v 1 ,
    32.4.11 z u 1 = θ u 1 ( z ( 2 v 0 z ) / ( 2 v 1 ) ) ,
    32.4.13 z v 1 = 2 u 0 2 u 1 v 1 2 θ v 1 .
    32.4.14 z w = ( 4 v 0 z ) w 2 + ( 2 θ 1 ) w + z ,
    27: 6.15 Sums
    6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
    6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
    6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
    28: 28.17 Stability as x ±
    §28.17 Stability as x ±
    If all solutions of (28.2.1) are bounded when x ± along the real axis, then the corresponding pair of parameters ( a , q ) is called stable. … For example, as x + one of the solutions me ν ( x , q ) and me ν ( x , q ) tends to 0 and the other is unbounded (compare Figure 28.13.5). …
    29: 28.19 Expansions in Series of me ν + 2 n Functions
    28.19.2 f ( z ) = n = f n me ν + 2 n ( z , q ) ,
    28.19.4 e i ν z = n = c 2 n ν + 2 n ( q ) me ν + 2 n ( z , q ) ,
    30: 5.16 Sums
    5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
    5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .