About the Project

of a set

AdvancedHelp

(0.015 seconds)

11—20 of 530 matching pages

11: 4.34 Derivatives and Differential Equations
4.34.12 w = ( 1 / a ) sinh ( a z + c ) ,
4.34.13 w = ( 1 / a ) cosh ( a z + c ) ,
4.34.14 w = ( 1 / a ) coth ( a z + c ) ,
12: 31.6 Path-Multiplicative Solutions
with ( s 1 , s 2 ) { 0 , 1 , a } , but with another set of { q m } . This denotes a set of solutions of (31.2.1) with the property that if we pass around a simple closed contour in the z -plane that encircles s 1 and s 2 once in the positive sense, but not the remaining finite singularity, then the solution is multiplied by a constant factor e 2 ν π i . …
13: 4.16 Elementary Properties
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
cos θ ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a 1 a ( 1 + a 2 ) 1 / 2
tan θ a ( 1 a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a 1
csc θ a 1 ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a a ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
sec θ ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 a a 1 ( 1 + a 2 ) 1 / 2
cot θ a 1 ( 1 a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a
14: Bille C. Carlson
The main theme of Carlson’s mathematical research has been to expose previously hidden permutation symmetries that can eliminate a set of transformations and thereby replace many formulas by a few. …
15: 17.11 Transformations of q -Appell Functions
17.11.1 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = ( a , b x , b y ; q ) ( c , x , y ; q ) ϕ 2 3 ( c / a , x , y b x , b y ; q , a ) ,
17.11.2 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = ( b , a x ; q ) ( c , x ; q ) n , r 0 ( a , b ; q ) n ( c / b , x ; q ) r b r y n ( q , c ; q ) n ( q ; q ) r ( a x ; q ) n + r ,
17.11.3 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = ( a , b x ; q ) ( c , x ; q ) n , r 0 ( a , b ; q ) n ( x ; q ) r ( c / a ; q ) n + r a r y n ( q , c / a ; q ) n ( q , b x ; q ) r .
17.11.4 m 1 , , m n 0 ( a ; q ) m 1 + m 2 + + m n ( b 1 ; q ) m 1 ( b 2 ; q ) m 2 ( b n ; q ) m n x 1 m 1 x 2 m 2 x n m n ( q ; q ) m 1 ( q ; q ) m 2 ( q ; q ) m n ( c ; q ) m 1 + m 2 + + m n = ( a , b 1 x 1 , b 2 x 2 , , b n x n ; q ) ( c , x 1 , x 2 , , x n ; q ) ϕ n n + 1 ( c / a , x 1 , x 2 , , x n b 1 x 1 , b 2 x 2 , , b n x n ; q , a ) .
16: 4.20 Derivatives and Differential Equations
4.20.13 w = ( 1 / a ) sin ( a z + c ) ,
4.20.14 w = ( 1 / a ) tan ( a z + c ) ,
17: 8.18 Asymptotic Expansions of I x ( a , b )
8.18.8 x 0 = a / ( a + b ) .
8.18.9 I x ( a , b ) 1 2 erfc ( η b / 2 ) + 1 2 π ( a + b ) ( x x 0 ) a ( 1 x 1 x 0 ) b k = 0 ( 1 ) k c k ( η ) ( a + b ) k ,
uniformly for x ( 0 , 1 ) and a / ( a + b ) , b / ( a + b ) [ δ , 1 δ ] , where δ again denotes an arbitrary small positive constant. … Let μ = b / a , and x 0 again be as in (8.18.8). …
18: 17.2 Calculus
17.2.2 ( a ; q ) n = 1 ( a q n ; q ) n = ( q / a ) n q ( n 2 ) ( q / a ; q ) n .
17.2.10 ( a ; q ) n ( b ; q ) n = ( q 1 n / a ; q ) n ( q 1 n / b ; q ) n ( a b ) n ,
17.2.12 ( a q n ; q ) n ( b q n ; q ) n = ( q / a ; q ) n ( q / b ; q ) n ( a b ) n .
17.2.15 ( a q n ; q ) k = ( a ; q ) k ( q / a ; q ) n ( q 1 k / a ; q ) n q n k ,
17.2.16 ( a q n ; q ) n k = ( q / a ; q ) n ( q / a ; q ) k ( a q ) n k q ( k 2 ) ( n 2 ) ,
19: 8.12 Uniform Asymptotic Expansions for Large Parameter
λ = z / a ,
8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
8.12.4 Q ( a , z ) = 1 2 erfc ( η a / 2 ) + S ( a , η ) ,
8.12.6 z a γ ( a , z ) = cos ( π a ) 2 sin ( π a ) ( e 1 2 a η 2 π F ( η a / 2 ) + T ( a , η ) ) ,
χ = ( z a ) / z ,
20: 31.3 Basic Solutions
Solutions (31.3.1) and (31.3.5)–(31.3.11) comprise a set of 8 local solutions of (31.2.1): 2 per singular point. … which arises from the homography z ~ = z / a , and to …