About the Project

of%20derivatives

AdvancedHelp

(0.002 seconds)

21—30 of 33 matching pages

21: Bibliography L
  • A. Laforgia (1979) On the Zeros of the Derivative of Bessel Functions of Second Kind. Pubblicazioni Serie III [Publication Series III], Vol. 179, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. Le (1985) An efficient derivative-free method for solving nonlinear equations. ACM Trans. Math. Software 11 (3), pp. 250–262.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • 22: Bibliography I
  • Y. Ikebe (1975) The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, pp. 878–887.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • 23: 18.39 Applications in the Physical Sciences
    Here the term 2 2 m 2 x 2 represents the quantum kinetic energy of a single particle of mass m , and V ( x ) its potential energy. …
    18.39.8 ψ n ( x ) = ( 2 2 m d 2 d x 2 + V ( x ) ) ψ n ( x ) = ϵ n ψ n ( x ) , n = 0 , 1 , 2 , ,
    18.39.38 𝐋 p m ( ρ ) = d m d ρ m 𝐋 p 0 ( ρ ) ,
    18.39.39 𝐋 p 0 ( ρ ) = e ρ d p d ρ p ( ρ p e ρ ) ,
    Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    24: 20.10 Integrals
    For corresponding results for argument derivatives of the theta functions see Erdélyi et al. (1954a, pp. 224–225) or Oberhettinger and Badii (1973, p. 193). …
    25: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • J. N. L. Connor and D. Farrelly (1981) Molecular collisions and cusp catastrophes: Three methods for the calculation of Pearcey’s integral and its derivatives. Chem. Phys. Lett. 81 (2), pp. 306–310.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 26: 20.11 Generalizations and Analogs
    Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
    27: 18.40 Methods of Computation
    Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . … Results similar to these appear in Langhoff et al. (1976) in methods developed for physics applications, and which includes treatments of systems with discontinuities in μ ( x ) , using what is referred to as the Stieltjes derivative which may be traced back to Stieltjes, as discussed by Deltour (1968, Eq. 12).
    Derivative Rule Approach
    An alternate, and highly efficient, approach follows from the derivative rule conjecture, see Yamani and Reinhardt (1975), and references therein, namely that … Comparisons of the precisions of Lagrange and PWCF interpolations to obtain the derivatives, are shown in Figure 18.40.2. …
    28: Bibliography W
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • 29: 25.6 Integer Arguments
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    §25.6(ii) Derivative Values
    30: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.