About the Project

natural

AdvancedHelp

(0.001 seconds)

11—20 of 393 matching pages

11: 27.18 Methods of Computation: Primes
It runs in time O ( ( ln n ) c ln ln ln n ) . … That is to say, it runs in time O ( ( ln n ) c ) for some constant c . …
12: 27.11 Asymptotic Formulas: Partial Sums
27.11.3 n x d ( n ) n = 1 2 ( ln x ) 2 + 2 γ ln x + O ( 1 ) ,
27.11.8 p x 1 p = ln ln x + A + O ( 1 ln x ) ,
27.11.10 p x ln p p = ln x + O ( 1 ) .
27.11.11 p x p h ( mod k ) ln p p = 1 ϕ ( k ) ln x + O ( 1 ) ,
The prime number theorem for arithmetic progressions—an extension of (27.2.3) and first proved in de la Vallée Poussin (1896a, b)—states that if ( h , k ) = 1 , then the number of primes p x with p h ( mod k ) is asymptotic to x / ( ϕ ( k ) ln x ) as x .
13: 27.12 Asymptotic Formulas: Primes
27.12.1 lim n p n n ln n = 1 ,
27.12.2 p n > n ln n , n = 1 , 2 , .
27.12.4 π ( x ) k = 1 ( k 1 ) ! x ( ln x ) k .
27.12.5 | π ( x ) li ( x ) | = O ( x exp ( c ( ln x ) 1 / 2 ) ) , x .
27.12.6 | π ( x ) li ( x ) | = O ( x exp ( d ( ln x ) 3 / 5 ( ln ln x ) 1 / 5 ) ) .
14: 4.6 Power Series
4.6.1 ln ( 1 + z ) = z 1 2 z 2 + 1 3 z 3 , | z | 1 , z 1 ,
4.6.2 ln z = ( z 1 z ) + 1 2 ( z 1 z ) 2 + 1 3 ( z 1 z ) 3 + , z 1 2 ,
4.6.3 ln z = ( z 1 ) 1 2 ( z 1 ) 2 + 1 3 ( z 1 ) 3 , | z 1 | 1 , z 0 ,
4.6.4 ln z = 2 ( ( z 1 z + 1 ) + 1 3 ( z 1 z + 1 ) 3 + 1 5 ( z 1 z + 1 ) 5 + ) , z 0 , z 0 ,
4.6.6 ln ( z + a ) = ln a + 2 ( ( z 2 a + z ) + 1 3 ( z 2 a + z ) 3 + 1 5 ( z 2 a + z ) 5 + ) , a > 0 , z a , z a .
15: 4.4 Special Values and Limits
4.4.1 ln 1 = 0 ,
4.4.2 ln ( 1 ± i 0 ) = ± π i ,
4.4.3 ln ( ± i ) = ± 1 2 π i .
4.4.4 e 0 = 1 ,
4.4.14 lim x 0 x a ln x = 0 , a > 0 ,
16: 4.7 Derivatives and Differential Equations
4.7.1 d d z ln z = 1 z ,
4.7.2 d d z Ln z = 1 z ,
4.7.3 d n d z n ln z = ( 1 ) n 1 ( n 1 ) ! z n ,
4.7.6 w ( z ) = Ln ( f ( z ) ) +  constant .
When a z is a general power, ln a is replaced by the branch of Ln a used in constructing a z . …
17: 6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.6 Ci ( z ) = γ + ln z + n = 1 ( 1 ) n z 2 n ( 2 n ) ! ( 2 n ) .
18: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.7 0 Ci ( t ) si ( t ) d t = ln 2 .
19: 2.2 Transcendental Equations
2.2.3 t 2 ln t = y .
With x = t 2 , f ( x ) = x 1 2 ln x . …
2.2.5 t 2 = y + ln t = y + 1 2 ln y + o ( 1 ) ,
2.2.6 t = y 1 2 ( 1 + 1 4 y 1 ln y + o ( y 1 ) ) , y .
20: 4.1 Special Notation
k , m , n integers.
e base of natural logarithms.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. … Sometimes in the literature the meanings of ln and Ln are interchanged; similarly for arcsin z and Arcsin z , etc. …