About the Project

modified Bessel functions

AdvancedHelp

(0.021 seconds)

31—40 of 118 matching pages

31: 10.36 Other Differential Equations
§10.36 Other Differential Equations
32: 13.18 Relations to Other Functions
§13.18(iii) Modified Bessel Functions
When κ = 0 the Whittaker functions can be expressed as modified Bessel functions. …
13.18.8 M 0 , ν ( 2 z ) = 2 2 ν + 1 2 Γ ( 1 + ν ) z I ν ( z ) ,
33: 33.10 Limiting Forms for Large ρ or Large | η |
§33.10(i) Large ρ
§33.10(ii) Large Positive η
F 0 ( η , ρ ) e π η ( π ρ ) 1 / 2 I 1 ( ( 8 η ρ ) 1 / 2 ) ,
G 0 ( η , ρ ) 2 e π η ( ρ / π ) 1 / 2 K 1 ( ( 8 η ρ ) 1 / 2 ) ,
§33.10(iii) Large Negative η
34: 33.20 Expansions for Small | ϵ |
§33.20(i) Case ϵ = 0
For the functions J , Y , I , and K see §§10.2(ii), 10.25(ii). …
33.20.5 𝖥 k ( ; r ) = p = 2 k 3 k ( 1 ) + 1 + p ( 2 | r | ) ( p + 1 ) / 2 C k , p I 2 + 1 + p ( 8 | r | ) , r < 0 .
The functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
35: 13.24 Series
§13.24(ii) Expansions in Series of Bessel Functions
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
36: 13.6 Relations to Other Functions
§13.6(iii) Modified Bessel Functions
When b = 2 a the Kummer functions can be expressed as modified Bessel functions. …
13.6.9 M ( ν + 1 2 , 2 ν + 1 , 2 z ) = Γ ( 1 + ν ) e z ( z / 2 ) ν I ν ( z ) ,
13.6.10 U ( ν + 1 2 , 2 ν + 1 , 2 z ) = 1 π e z ( 2 z ) ν K ν ( z ) ,
13.6.11_1 M ( ν + 1 2 , 2 ν + 1 + n , 2 z ) = Γ ( ν ) e z ( z / 2 ) ν k = 0 n ( n ) k ( 2 ν ) k ( ν + k ) ( 2 ν + 1 + n ) k k ! I ν + k ( z ) ,
37: 13.11 Series
13.11.1 M ( a , b , z ) = Γ ( a 1 2 ) e 1 2 z ( 1 4 z ) 1 2 a s = 0 ( 2 a 1 ) s ( 2 a b ) s ( b ) s s ! ( a 1 2 + s ) I a 1 2 + s ( 1 2 z ) , a + 1 2 , b 0 , 1 , 2 , ,
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
( n + 1 ) A n + 1 = ( n + b 1 ) A n 1 + ( 2 a b ) A n 2 , n = 2 , 3 , 4 , .
38: 12.7 Relations to Other Functions
§12.7(iii) Modified Bessel Functions
12.7.8 U ( 2 , z ) = z 5 / 2 4 2 π ( 2 K 1 4 ( 1 4 z 2 ) + 3 K 3 4 ( 1 4 z 2 ) K 5 4 ( 1 4 z 2 ) ) ,
12.7.9 U ( 1 , z ) = z 3 / 2 2 2 π ( K 1 4 ( 1 4 z 2 ) + K 3 4 ( 1 4 z 2 ) ) ,
12.7.10 U ( 0 , z ) = z 2 π K 1 4 ( 1 4 z 2 ) ,
12.7.11 U ( 1 , z ) = z 3 / 2 2 π ( K 3 4 ( 1 4 z 2 ) K 1 4 ( 1 4 z 2 ) ) .
39: 8.7 Series Expansions
§8.7 Series Expansions
8.7.4 γ ( a , x ) = Γ ( a ) x 1 2 a e x n = 0 e n ( 1 ) x 1 2 n I n + a ( 2 x 1 / 2 ) , a 0 , 1 , 2 , .
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
40: Bibliography T
  • N. M. Temme (1975) On the numerical evaluation of the modified Bessel function of the third kind. J. Comput. Phys. 19 (3), pp. 324–337.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1994c) Steepest descent paths for integrals defining the modified Bessel functions of imaginary order. Methods Appl. Anal. 1 (1), pp. 14–24.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • M. J. Tretter and G. W. Walster (1980) Further comments on the computation of modified Bessel function ratios. Math. Comp. 35 (151), pp. 937–939.