About the Project

large%20%CE%BA

AdvancedHelp

(0.002 seconds)

21—30 of 229 matching pages

21: 35.10 Methods of Computation
For large 𝐓 the asymptotic approximations referred to in §35.7(iv) are available. … These algorithms are extremely efficient, converge rapidly even for large values of m , and have complexity linear in m .
22: Bibliography U
  • F. Ursell (1972) Integrals with a large parameter. Several nearly coincident saddle-points. Proc. Cambridge Philos. Soc. 72, pp. 49–65.
  • F. Ursell (1980) Integrals with a large parameter: A double complex integral with four nearly coincident saddle-points. Math. Proc. Cambridge Philos. Soc. 87 (2), pp. 249–273.
  • F. Ursell (1984) Integrals with a large parameter: Legendre functions of large degree and fixed order. Math. Proc. Cambridge Philos. Soc. 95 (2), pp. 367–380.
  • 23: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • 24: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    25: 28.1 Special Notation
    Ce ν ( z , q ) , Se ν ( z , q ) , Fe n ( z , q ) , Ge n ( z , q ) ,
    in n = fe n , ceh n = Ce n , inh n = Fe n ,
    Abramowitz and Stegun (1964, Chapter 20)
    26: 3.8 Nonlinear Equations
    for all n sufficiently large, where A and p are independent of n , then the sequence is said to have convergence of the p th order. … For moderate or large values of n it is not uncommon for the magnitude of the right-hand side of (3.8.14) to be very large compared with unity, signifying that the computation of zeros of polynomials is often an ill-posed problem. …
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    27: 10.70 Zeros
    §10.70 Zeros
    Asymptotic approximations for large zeros are as follows. …If m is a large positive integer, then …
    28: Karl Dilcher
    Over the years he authored or coauthored numerous papers on Bernoulli numbers and related topics, and he maintains a large on-line bibliography on the subject. …
    29: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …They tend to thin out among the large integers, but this thinning out is not completely regular. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    30: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates J 0 ( x ) , J 1 ( x ) , x = 0 ( .001 ) 16 ( .01 ) 25 , 10D; Y 0 ( x ) , Y 1 ( x ) , x = 0.01 ( .01 ) 25 , 8–9S or 8D. Also included are auxiliary functions to facilitate interpolation of the tables of Y 0 ( x ) , Y 1 ( x ) for small values of x , as well as auxiliary functions to compute all four functions for large values of x .

  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.