About the Project

inverse function

AdvancedHelp

(0.008 seconds)

41—50 of 161 matching pages

41: 16.15 Integral Representations and Integrals
For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
42: 19.27 Asymptotic Approximations and Expansions
19.27.13 R J ( x , y , z , p ) = 3 2 z p ( ln ( 8 z a + g ) 2 R C ( 1 , p z ) + O ( ( a z + a p ) ln p a ) ) , max ( x , y ) / min ( z , p ) 0 .
19.27.14 R J ( x , y , z , p ) = 3 y z R C ( x , p ) 6 y z R G ( 0 , y , z ) + O ( x + 2 p y z ) , max ( x , p ) / min ( y , z ) 0 .
19.27.16 R J ( x , y , z , p ) = ( 3 / x ) R C ( ( h + p ) 2 , 2 ( b + h ) p ) + O ( 1 x 3 / 2 ln x b + h ) , max ( y , z , p ) / x 0 .
43: 13.21 Uniform Asymptotic Approximations for Large κ
13.21.12 κ ζ 4 μ 2 2 μ arctan ( κ ζ 4 μ 2 2 μ ) = 1 2 ( X π μ ) μ arctan ( x κ 2 μ 2 μ X ) + κ arcsin ( X 2 κ 2 μ 2 ) , 2 κ 2 κ 2 μ 2 x < 2 κ + 2 κ 2 μ 2 .
13.21.20 ζ ^ = ( 3 2 κ ( 1 2 X + 2 μ arctan ( x κ x κ 2 μ 2 2 μ 2 μ X ) + κ arccos ( x 2 κ 2 κ 2 μ 2 ) ) ) 2 / 3 , 2 κ 2 κ 2 μ 2 < x 2 κ + 2 κ 2 μ 2 ,
44: 13.20 Uniform Asymptotic Approximations for Large μ
13.20.9 ζ ζ 2 + α 2 + α 2 arcsinh ( ζ α ) = X μ 2 κ μ ln ( X + x 2 κ 2 μ 2 κ 2 ) 2 ln ( μ X + 2 μ 2 κ x x μ 2 κ 2 ) .
13.20.13 ζ ζ 2 α 2 α 2 arccosh ( ζ α ) = X μ 2 κ μ ln ( X + x 2 κ 2 κ 2 μ 2 ) 2 ln ( κ x μ X 2 μ 2 x κ 2 μ 2 ) , x 2 κ + 2 κ 2 μ 2 ,
13.20.14 ζ α 2 ζ 2 + α 2 arcsin ( ζ α ) = X μ + 2 κ μ arctan ( x 2 κ X ) 2 arctan ( κ x 2 μ 2 μ X ) , 2 κ 2 κ 2 μ 2 x 2 κ + 2 κ 2 μ 2 ,
13.20.15 ζ ζ 2 α 2 α 2 arccosh ( ζ α ) = X μ + 2 κ μ ln ( 2 κ X x 2 κ 2 μ 2 ) + 2 ln ( μ X + 2 μ 2 κ x x κ 2 μ 2 ) , 0 < x 2 κ 2 κ 2 μ 2 ,
45: 20.9 Relations to Other Functions
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
46: 22.14 Integrals
22.14.2 cn ( x , k ) d x = k 1 Arccos ( dn ( x , k ) ) ,
The branches of the inverse trigonometric functions are chosen so that they are continuous. …
22.14.5 sd ( x , k ) d x = ( k k ) 1 Arcsin ( k cd ( x , k ) ) ,
Again, the branches of the inverse trigonometric functions must be continuous. …
47: 15.4 Special Cases
48: 19.7 Connection Formulas
19.7.8 Π ( ϕ , α 2 , k ) + Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + c R C ( ( c 1 ) ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , α 2 ω 2 = k 2 .
19.7.9 ( k 2 α 2 ) Π ( ϕ , α 2 , k ) + ( k 2 ω 2 ) Π ( ϕ , ω 2 , k ) = k 2 F ( ϕ , k ) α 2 ω 2 c 1 R C ( c ( c k 2 ) , ( c α 2 ) ( c ω 2 ) ) , ( 1 α 2 ) ( 1 ω 2 ) = 1 k 2 .
19.7.10 ( 1 α 2 ) Π ( ϕ , α 2 , k ) + ( 1 ω 2 ) Π ( ϕ , ω 2 , k ) = F ( ϕ , k ) + ( 1 α 2 ω 2 ) c k 2 R C ( c ( c 1 ) , ( c α 2 ) ( c ω 2 ) ) , ( k 2 α 2 ) ( k 2 ω 2 ) = k 2 ( k 2 1 ) .
49: Guide to Searching the DLMF
  • All the inverse trigonometric functions (arcsin vs. Arcsin, etc.).

  • 50: 19.23 Integral Representations