About the Project

inverse function

AdvancedHelp

(0.009 seconds)

31—40 of 161 matching pages

31: 19.17 Graphics
Because the R -function is homogeneous, there is no loss of generality in giving one variable the value 1 or 1 (as in Figure 19.3.2). …The case y = 1 corresponds to elementary functions. …
See accompanying text
Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . …The function is asymptotic to 3 2 π / y p as p 0 + , and to ( 3 2 / p ) ln ( 16 / y ) as y 0 + . … Magnify 3D Help
32: 22.10 Maclaurin Series
Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). …
33: 19.12 Asymptotic Approximations
19.12.6 R C ( x , y ) = π 2 y x y ( 1 + O ( x y ) ) , x / y 0 ,
19.12.7 R C ( x , y ) = 1 2 x ( ( 1 + y 2 x ) ln ( 4 x y ) y 2 x ) ( 1 + O ( y 2 / x 2 ) ) , y / x 0 .
34: 9.8 Modulus and Phase
9.8.4 θ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) .
9.8.8 ϕ ( x ) = arctan ( Ai ( x ) / Bi ( x ) ) .
9.8.11 θ ( x ) = 2 3 π + arctan ( Y 1 / 3 ( ξ ) / J 1 / 3 ( ξ ) ) ,
9.8.12 ϕ ( x ) = 1 3 π + arctan ( Y 2 / 3 ( ξ ) / J 2 / 3 ( ξ ) ) .
35: 19.26 Addition Theorems
19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
19.26.13 R C ( α 2 , α 2 θ ) + R C ( β 2 , β 2 θ ) = R C ( σ 2 , σ 2 θ ) , σ = ( α β + θ ) / ( α + β ) ,
19.26.14 ( p y ) R C ( x , p ) + ( q y ) R C ( x , q ) = ( η ξ ) R C ( ξ , η ) , x 0 , y 0 ; p , q { 0 } ,
19.26.22 R J ( x , y , z , p ) = 2 R J ( x + λ , y + λ , z + λ , p + λ ) + 3 R C ( α 2 , β 2 ) ,
19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
36: 19.8 Quadratic Transformations
37: 12.11 Zeros
where t ( ζ ) is the function inverse to ζ ( t ) , defined by (12.10.39) (see also (12.10.41)), and …
38: 14.15 Uniform Asymptotic Approximations
where the inverse trigonometric functions take their principal values (§4.23(ii)). …
14.15.27 1 2 ζ ( ζ 2 α 2 ) 1 / 2 1 2 α 2 arccosh ( ζ α ) = ( 1 a 2 ) 1 / 2 arctanh ( 1 x ( x 2 a 2 1 a 2 ) 1 / 2 ) arccosh ( x a ) , a x < 1 , α ζ < ,
The inverse hyperbolic and trigonometric functions take their principal values (§§4.23(ii), 4.37(ii)). …
14.15.31 1 2 ζ ( ζ 2 + α 2 ) 1 / 2 + 1 2 α 2 arcsinh ( ζ α ) = ( 1 + a 2 ) 1 / 2 arctanh ( x ( 1 + a 2 x 2 + a 2 ) 1 / 2 ) arcsinh ( x a ) , 1 < x < 1 , < ζ < ,
(The inverse hyperbolic functions again take their principal values.) …
39: 19.20 Special Cases
19.20.5 2 R G ( x , y , y ) = y R C ( x , y ) + x .
19.20.13 2 ( p x ) R J ( x , y , z , p ) = 3 R F ( x , y , z ) 3 x R C ( y z , p 2 ) , p = x ± ( y x ) ( z x ) ,
When the variables are real and distinct, the various cases of R J ( x , y , z , p ) are called circular (hyperbolic) cases if ( p x ) ( p y ) ( p z ) is positive (negative), because they typically occur in conjunction with inverse circular (hyperbolic) functions. …
19.20.20 R D ( x , y , y ) = 3 2 ( y x ) ( R C ( x , y ) x y ) , x y , y 0 ,
19.20.21 R D ( x , x , z ) = 3 z x ( R C ( z , x ) 1 z ) , x z , x z 0 .
40: 19.30 Lengths of Plane Curves