About the Project

hypergeometric identities

AdvancedHelp

(0.003 seconds)

11—20 of 43 matching pages

11: 17.6 ϕ 1 2 Function
Rogers–Fine Identity
12: 13.6 Relations to Other Functions
§13.6(v) Orthogonal Polynomials
Hermite Polynomials
Laguerre Polynomials
Charlier Polynomials
§13.6(vi) Generalized Hypergeometric Functions
13: 20.11 Generalizations and Analogs
Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
14: Bibliography W
  • H. S. Wilf and D. Zeilberger (1992a) An algorithmic proof theory for hypergeometric (ordinary and “ q ”) multisum/integral identities. Invent. Math. 108, pp. 575–633.
  • 15: 17.17 Physical Applications
    §17.17 Physical Applications
    In exactly solved models in statistical mechanics (Baxter (1981, 1982)) the methods and identities of §17.12 play a substantial role. … See Kassel (1995). …
    16: Bibliography S
  • L. Shen (1998) On an identity of Ramanujan based on the hypergeometric series F 1 2 ( 1 3 , 2 3 ; 1 2 ; x ) . J. Number Theory 69 (2), pp. 125–134.
  • 17: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    35.7.2 P ν ( γ , δ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 2 ( ν , γ + δ + ν + 1 2 ( m + 1 ) γ + 1 2 ( m + 1 ) ; 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; γ , δ , ν ; ( γ ) > 1 .
    35.7.6 F 1 2 ( a , b c ; 𝐓 ) = | 𝐈 𝐓 | c a b F 1 2 ( c a , c b c ; 𝐓 ) = | 𝐈 𝐓 | a F 1 2 ( a , c b c ; 𝐓 ( 𝐈 𝐓 ) 1 ) = | 𝐈 𝐓 | b F 1 2 ( c a , b c ; 𝐓 ( 𝐈 𝐓 ) 1 ) .
    35.7.7 F 1 2 ( a , b c ; 𝐈 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) , ( c ) , ( c a b ) > 1 2 ( m 1 ) .
    18: 13.9 Zeros
    Inequalities for ϕ r are given in Gatteschi (1990), and identities involving infinite series of all of the complex zeros of M ( a , b , x ) are given in Ahmed and Muldoon (1980). …
    19: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    35.8.5 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 2 ) Γ m ( c ) Γ m ( b 2 a 3 ) Γ m ( c + a 3 ) F 2 3 ( b 1 a 1 , b 1 a 2 , a 3 b 1 , c + a 3 ; 𝐈 ) , ( b 2 ) , ( c ) > 1 2 ( m 1 ) .
    35.8.6 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 a 1 ) Γ m ( b 1 a 2 ) Γ m ( b 1 ) Γ m ( b 1 a 1 a 2 ) Γ m ( b 1 a 3 ) Γ m ( b 1 a 1 a 2 a 3 ) Γ m ( b 1 a 1 a 3 ) Γ m ( b 1 a 2 a 3 ) .
    35.8.7 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 ) Γ m ( b 2 ) Γ ( c ) Γ m ( a 1 ) Γ m ( c + a 2 ) Γ ( c + a 3 ) F 2 3 ( b 1 a 1 , b 2 a 2 , c c + a 2 , c + a 3 ; 𝐈 ) , ( b 1 ) , ( b 2 ) , ( c ) > 1 2 ( m 1 ) .
    35.8.13 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 a 1 1 2 ( m + 1 ) F q p ( a 2 , , a p + 1 b 2 , , b q + 1 ; 𝐓 𝐗 ) d 𝐗 = 1 B m ( b 1 a 1 , a 1 ) F q + 1 p + 1 ( a 1 , , a p + 1 b 1 , , b q + 1 ; 𝐓 ) , ( b 1 a 1 ) , ( a 1 ) > 1 2 ( m 1 ) .
    20: 13.15 Recurrence Relations and Derivatives
    13.15.1 ( κ μ 1 2 ) M κ 1 , μ ( z ) + ( z 2 κ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) M κ + 1 , μ ( z ) = 0 ,
    13.15.2 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( z + 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.3 ( κ μ 1 2 ) M κ 1 2 , μ + 1 2 ( z ) + ( 1 + 2 μ ) z M κ , μ ( z ) ( κ + μ + 1 2 ) M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
    13.15.4 2 μ M κ 1 2 , μ 1 2 ( z ) 2 μ M κ + 1 2 , μ 1 2 ( z ) z M κ , μ ( z ) = 0 ,
    Other versions of several of the identities in this subsection can be constructed by use of (13.3.29).