About the Project

hyperbolic functions

AdvancedHelp

(0.007 seconds)

21—30 of 143 matching pages

21: 4.18 Inequalities
4.18.5 | sinh y | | sin z | cosh y ,
4.18.6 | sinh y | | cos z | cosh y ,
4.18.7 | csc z | csch | y | ,
4.18.8 | cos z | cosh | z | ,
4.18.9 | sin z | sinh | z | ,
22: 4.38 Inverse Hyperbolic Functions: Further Properties
§4.38 Inverse Hyperbolic Functions: Further Properties
§4.38(i) Power Series
§4.38(ii) Derivatives
§4.38(iii) Addition Formulas
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
23: 14.19 Toroidal (or Ring) Functions
14.19.4 P n 1 2 m ( cosh ξ ) = Γ ( n + m + 1 2 ) ( sinh ξ ) m 2 m π 1 / 2 Γ ( n m + 1 2 ) Γ ( m + 1 2 ) 0 π ( sin ϕ ) 2 m ( cosh ξ + cos ϕ sinh ξ ) n + m + ( 1 / 2 ) d ϕ ,
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
24: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
25: 4.45 Methods of Computation
Hyperbolic and Inverse Hyperbolic Functions
The hyperbolic functions can be computed directly from the definitions (4.28.1)–(4.28.7). … Similarly for the hyperbolic and inverse hyperbolic functions; compare (4.28.1)–(4.28.7), §4.37(iv), and (4.37.7)–(4.37.9). …
26: 28.32 Mathematical Applications
28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 c 2 k 2 ( cosh ( 2 ξ ) cos ( 2 η ) ) V = 0 .
27: 4.43 Cubic Equations
§4.43 Cubic Equations
4.43.2 z 3 + p z + q = 0
28: 13.24 Series
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
29: 24.7 Integral Representations
24.7.3 B 2 n = ( 1 ) n + 1 π 1 2 1 2 n 0 t 2 n sech 2 ( π t ) d t ,
24.7.4 B 2 n = ( 1 ) n + 1 π 0 t 2 n csch 2 ( π t ) d t ,
24.7.6 E 2 n = ( 1 ) n 2 2 n + 1 0 t 2 n sech ( π t ) d t .
24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
30: 28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .