About the Project

hyperbolic secant function

AdvancedHelp

(0.003 seconds)

1—10 of 32 matching pages

1: 4.1 Special Notation
k , m , n integers.
; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
2: 22.10 Maclaurin Series
22.10.7 sn ( z , k ) = tanh z k 2 4 ( z sinh z cosh z ) sech 2 z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
22.10.9 dn ( z , k ) = sech z + k 2 4 ( z + sinh z cosh z ) tanh z sech z + O ( k 4 ) .
3: 4.29 Graphics
§4.29(i) Real Arguments
See accompanying text
Figure 4.29.5: csch x and sech x . Magnify
§4.29(ii) Complex Arguments
The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
4: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
5: 4.30 Elementary Properties
§4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions are real, nonnegative, and finite.
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sech θ ( 1 + a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a a 1 ( a 2 1 ) 1 / 2
6: 4.28 Definitions and Periodicity
4.28.6 sech z = 1 cosh z ,
4.28.12 sec ( i z ) = sech z ,
7: 4.34 Derivatives and Differential Equations
4.34.3 d d z tanh z = sech 2 z ,
4.34.5 d d z sech z = sech z tanh z ,
8: 4.37 Inverse Hyperbolic Functions
4.37.5 Arcsech z = Arccosh ( 1 / z ) ,
4.37.8 arcsech z = arccosh ( 1 / z ) .
4.37.14 arcsech ( z ) = π i + arcsech z , z 0 .
For the corresponding results for arccsch z , arcsech z , and arccoth z , use (4.37.7)–(4.37.9); compare §4.23(iv). …
9: 28.20 Definitions and Basic Properties
10: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
§10.19(i) Asymptotic Forms
§10.19(ii) Debye’s Expansions
§10.19(iii) Transition Region
See also §10.20(i).