About the Project

homogeneous harmonic polynomials

AdvancedHelp

(0.001 seconds)

41—50 of 282 matching pages

41: 23.10 Addition Theorems and Other Identities
§23.10(iv) Homogeneity
42: 31.14 General Fuchsian Equation
An algorithm given in Kovacic (1986) determines if a given (not necessarily Fuchsian) second-order homogeneous linear differential equation with rational coefficients has solutions expressible in finite terms (Liouvillean solutions). …
43: 18.4 Graphics
See accompanying text
Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . … Magnify
See accompanying text
Figure 18.4.4: Legendre polynomials P n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.7: Monic Hermite polynomials h n ( x ) = 2 n H n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
44: 19.18 Derivatives and Differential Equations
and two similar equations obtained by permuting x , y , z in (19.18.10). More concisely, if v = R a ( 𝐛 ; 𝐳 ) , then each of (19.16.14)–(19.16.18) and (19.16.20)–(19.16.23) satisfies Euler’s homogeneity relation: …
45: 18.7 Interrelations and Limit Relations
§18.7 Interrelations and Limit Relations
Chebyshev, Ultraspherical, and Jacobi
Legendre, Ultraspherical, and Jacobi
§18.7(ii) Quadratic Transformations
§18.7(iii) Limit Relations
46: 18.41 Tables
§18.41(i) Polynomials
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
47: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1.
Laguerre
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
§18.6(ii) Limits to Monomials
18.6.4 lim λ C n ( λ ) ( x ) C n ( λ ) ( 1 ) = x n ,
48: 18.1 Notation
Classical OP’s
Hahn Class OP’s
Wilson Class OP’s
Nor do we consider the shifted Jacobi polynomials: …or the dilated Chebyshev polynomials of the first and second kinds: …
49: Bibliography D
  • P. Dean (1966) The constrained quantum mechanical harmonic oscillator. Proc. Cambridge Philos. Soc. 62, pp. 277–286.
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 50: Bibliography L
  • D. J. Leeming (1989) The real zeros of the Bernoulli polynomials. J. Approx. Theory 58 (2), pp. 124–150.
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a) Computations of spheroidal harmonics with complex arguments: A review with an algorithm. Phys. Rev. E 58 (5), pp. 6792–6806.
  • J. L. López and N. M. Temme (1999a) Approximation of orthogonal polynomials in terms of Hermite polynomials. Methods Appl. Anal. 6 (2), pp. 131–146.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.